BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23859471)

  • 21. Experimental confirmation that body size determines mate preference via phenotype matching in a stickleback species pair.
    Conte GL; Schluter D
    Evolution; 2013 May; 67(5):1477-84. PubMed ID: 23617922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The temporal window of ecological adaptation in postglacial lakes: a comparison of head morphology, trophic position and habitat use in Norwegian threespine stickleback populations.
    Østbye K; Harrod C; Gregersen F; Klepaker T; Schulz M; Schluter D; Vøllestad LA
    BMC Evol Biol; 2016 May; 16():102. PubMed ID: 27178328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Divergent sexual selection enhances reproductive isolation in sticklebacks.
    Boughman JW
    Nature; 2001 Jun; 411(6840):944-8. PubMed ID: 11418857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of ecology in speciation by sexual selection: a systematic empirical review.
    Scordato ES; Symes LB; Mendelson TC; Safran RJ
    J Hered; 2014; 105 Suppl 1():782-94. PubMed ID: 25149254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ecological divergence and habitat isolation between two migratory forms of Japanese threespine stickleback (Gasterosteus aculeatus).
    Kume M; Kitano J; Mori S; Shibuya T
    J Evol Biol; 2010 Jul; 23(7):1436-46. PubMed ID: 20456572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predictable patterns of disruptive selection in stickleback in postglacial lakes.
    Bolnick DI; Lau OL
    Am Nat; 2008 Jul; 172(1):1-11. PubMed ID: 18452402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for ecology's role in speciation.
    McKinnon JS; Mori S; Blackman BK; David L; Kingsley DM; Jamieson L; Chou J; Schluter D
    Nature; 2004 May; 429(6989):294-8. PubMed ID: 15152252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can intraspecific competition drive disruptive selection? An experimental test in natural populations of sticklebacks.
    Bolnick DI
    Evolution; 2004 Mar; 58(3):608-18. PubMed ID: 15119444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ecological stage changes benefits of mate choice and drives preference divergence.
    Tinghitella RM; Lackey ACR; Durso C; Koop JAH; Boughman JW
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1806):20190546. PubMed ID: 32654644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A test of ecologically dependent postmating isolation between sympatric sticklebacks.
    Rundle HD
    Evolution; 2002 Feb; 56(2):322-9. PubMed ID: 11926500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Testing for parallel allochronic isolation in lake-stream stickleback.
    Hanson D; Barrett RD; Hendry AP
    J Evol Biol; 2016 Jan; 29(1):47-57. PubMed ID: 26408356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Divergence in coloration and ecological speciation in the Anolis marmoratus species complex.
    Muñoz MM; Crawford NG; McGreevy TJ; Messana NJ; Tarvin RD; Revell LJ; Zandvliet RM; Hopwood JM; Mock E; Schneider AL; Schneider CJ
    Mol Ecol; 2013 May; 22(10):2668-82. PubMed ID: 23611648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The accumulation of reproductive isolation in early stages of divergence supports a role for sexual selection.
    Martin MD; Mendelson TC
    J Evol Biol; 2016 Apr; 29(4):676-89. PubMed ID: 26717252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ontogenetic and evolutionary effects of predation and competition on nine-spined stickleback (Pungitius pungitius) body size.
    Välimäki K; Herczeg G
    J Anim Ecol; 2012 Jul; 81(4):859-67. PubMed ID: 22448742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repeated and predictable patterns of ecotypic differentiation during a biological invasion: lake-stream divergence in parapatric Swiss stickleback.
    Lucek K; Sivasundar A; Roy D; Seehausen O
    J Evol Biol; 2013 Dec; 26(12):2691-709. PubMed ID: 24164658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Admixture mapping of male nuptial colour and body shape in a recently formed hybrid population of threespine stickleback.
    Malek TB; Boughman JW; Dworkin I; Peichel CL
    Mol Ecol; 2012 Nov; 21(21):5265-79. PubMed ID: 22681397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The contribution of post-copulatory mechanisms to incipient ecological speciation in sticklebacks.
    Kaufmann J; Eizaguirre C; Milinski M; Lenz TL
    Biol Lett; 2015 Jan; 11(1):20140933. PubMed ID: 25589488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Male-male competition and nuptial-colour displacement as a diversifying force in Lake Victoria cichlid fishes.
    Seehausen O; Schluter D
    Proc Biol Sci; 2004 Jul; 271(1546):1345-53. PubMed ID: 15306332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecological selection against hybrids in natural populations of sympatric threespine sticklebacks.
    Gow JL; Peichel CL; Taylor EB
    J Evol Biol; 2007 Nov; 20(6):2173-80. PubMed ID: 17887972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinal genomic analysis reveals strong reproductive isolation across a steep habitat transition in stickleback fish.
    Haenel Q; Oke KB; Laurentino TG; Hendry AP; Berner D
    Nat Commun; 2021 Aug; 12(1):4850. PubMed ID: 34381033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.