BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 23859497)

  • 1. Effect of surfactant type and redox polymer type on single-walled carbon nanotube modified electrodes.
    Chen J; Tran TO; Ray MT; Brunski DB; Keay JC; Hickey D; Johnson MB; Glatzhofer DT; Schmidtke DW
    Langmuir; 2013 Aug; 29(33):10586-95. PubMed ID: 23859497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors.
    Tsai TW; Heckert G; Neves LF; Tan Y; Kao DY; Harrison RG; Resasco DE; Schmidtke DW
    Anal Chem; 2009 Oct; 81(19):7917-25. PubMed ID: 19788314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Performance of Glucose Bioanodes Using Composites of (7,6) Single-Walled Carbon Nanotubes and a Ferrocene-LPEI Redox Polymer.
    Chen J; Munje R; Godman NP; Prasad S; Glatzhofer DT; Schmidtke DW
    Langmuir; 2017 Aug; 33(31):7591-7599. PubMed ID: 28742363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of single-walled carbon nanotubes into ferrocene-modified linear polyethylenimine redox polymer films.
    Tran TO; Lammert EG; Chen J; Merchant SA; Brunski DB; Keay JC; Johnson MB; Glatzhofer DT; Schmidtke DW
    Langmuir; 2011 May; 27(10):6201-10. PubMed ID: 21480616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites.
    Joshi PP; Merchant SA; Wang Y; Schmidtke DW
    Anal Chem; 2005 May; 77(10):3183-8. PubMed ID: 15889907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
    Muguruma H; Hoshino T; Nowaki K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers.
    Wang Y; Joshi PP; Hobbs KL; Johnson MB; Schmidtke DW
    Langmuir; 2006 Nov; 22(23):9776-83. PubMed ID: 17073511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer-by-layer assembly of ferrocene-modified linear polyethylenimine redox polymer films.
    DeLuca JL; Hickey DP; Bamper DA; Glatzhofer DT; Johnson MB; Schmidtke DW
    Chemphyschem; 2013 Jul; 14(10):2149-58. PubMed ID: 23712926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.
    Samanta SK; Fritsch M; Scherf U; Gomulya W; Bisri SZ; Loi MA
    Acc Chem Res; 2014 Aug; 47(8):2446-56. PubMed ID: 25025887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosslinked redox polymer enzyme electrodes containing carbon nanotubes for high and stable glucose oxidation current.
    MacAodha D; Ferrer ML; Conghaile PÓ; Kavanagh P; Leech D
    Phys Chem Chem Phys; 2012 Nov; 14(42):14667-72. PubMed ID: 23033161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications.
    Li Y; Wang P; Wang L; Lin X
    Biosens Bioelectron; 2007 Jun; 22(12):3120-5. PubMed ID: 17350819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cell-compatible conductive film from a carbon nanotube network adsorbed on poly-L-lysine.
    Lin DW; Bettinger CJ; Ferreira JP; Wang CL; Bao Z
    ACS Nano; 2011 Dec; 5(12):10026-32. PubMed ID: 22053708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic electrochemical activity of single walled carbon nanotube-Nafion assemblies.
    Snowden ME; Edwards MA; Rudd NC; Macpherson JV; Unwin PR
    Phys Chem Chem Phys; 2013 Apr; 15(14):5030-8. PubMed ID: 23450204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer.
    Gao Q; Guo Y; Liu J; Yuan X; Qi H; Zhang C
    Bioelectrochemistry; 2011 Jun; 81(2):109-13. PubMed ID: 21570925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of highly purified single wall carbon nanotubes dispersed in polymer thin films for an improved performance of an electrochemical glucose sensor.
    Goornavar V; Jeffers R; Biradar S; Ramesh GT
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():299-307. PubMed ID: 24857497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability.
    Rengaraj S; Kavanagh P; Leech D
    Biosens Bioelectron; 2011 Dec; 30(1):294-9. PubMed ID: 22005596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties.
    Zhang X; Lü Z; Wen M; Liang H; Zhang J; Liu Z
    J Phys Chem B; 2005 Jan; 109(3):1101-7. PubMed ID: 16851066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance hydrogen production and oxidation electrodes with hydrogenase supported on metallic single-wall carbon nanotube networks.
    Svedružić D; Blackburn JL; Tenent RC; Rocha JD; Vinzant TB; Heben MJ; King PW
    J Am Chem Soc; 2011 Mar; 133(12):4299-306. PubMed ID: 21384925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ionic surfactant adsorption on single-walled carbon nanotube thin film devices in aqueous solutions.
    Fu Q; Liu J
    Langmuir; 2005 Feb; 21(4):1162-5. PubMed ID: 15697254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational attachment of synthetic triptycene orthoquinone onto carbon nanotubes for electrocatalysis and sensitive detection of thiols.
    Gong K; Zhu X; Zhao R; Xiong S; Mao L; Chen C
    Anal Chem; 2005 Dec; 77(24):8158-65. PubMed ID: 16351170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.