These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 23859629)
1. Improving the binding characteristics of tripodal compounds on single layer graphene. Mann JA; Dichtel WR ACS Nano; 2013 Aug; 7(8):7193-9. PubMed ID: 23859629 [TBL] [Abstract][Full Text] [Related]
2. Multivalent binding motifs for the noncovalent functionalization of graphene. Mann JA; Rodríguez-López J; Abruña HD; Dichtel WR J Am Chem Soc; 2011 Nov; 133(44):17614-7. PubMed ID: 21988499 [TBL] [Abstract][Full Text] [Related]
3. A green approach to the synthesis of graphene nanosheets. Guo HL; Wang XF; Qian QY; Wang FB; Xia XH ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285 [TBL] [Abstract][Full Text] [Related]
4. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Brownson DA; Varey SA; Hussain F; Haigh SJ; Banks CE Nanoscale; 2014; 6(3):1607-21. PubMed ID: 24337073 [TBL] [Abstract][Full Text] [Related]
6. Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices. Wang X; Wang J; Cheng H; Yu P; Ye J; Mao L Langmuir; 2011 Sep; 27(17):11180-6. PubMed ID: 21793577 [TBL] [Abstract][Full Text] [Related]
7. Control of the graphene-protein interface is required to preserve adsorbed protein function. Alava T; Mann JA; Théodore C; Benitez JJ; Dichtel WR; Parpia JM; Craighead HG Anal Chem; 2013 Mar; 85(5):2754-9. PubMed ID: 23363062 [TBL] [Abstract][Full Text] [Related]
8. Protein electrochemistry using graphene-based nano-assembly: an ultrasensitive electrochemical detection of protein molecules via nanoparticle-electrode collisions. Li D; Liu J; Barrow CJ; Yang W Chem Commun (Camb); 2014 Aug; 50(60):8197-200. PubMed ID: 24927153 [TBL] [Abstract][Full Text] [Related]
9. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Chen D; Li L; Guo L Nanotechnology; 2011 Aug; 22(32):325601. PubMed ID: 21757797 [TBL] [Abstract][Full Text] [Related]
10. Transparent, flexible, all-reduced graphene oxide thin film transistors. He Q; Wu S; Gao S; Cao X; Yin Z; Li H; Chen P; Zhang H ACS Nano; 2011 Jun; 5(6):5038-44. PubMed ID: 21524119 [TBL] [Abstract][Full Text] [Related]
11. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Lee D; Lee H; Ahn Y; Jeong Y; Lee DY; Lee Y Nanoscale; 2013 Sep; 5(17):7750-5. PubMed ID: 23842732 [TBL] [Abstract][Full Text] [Related]
12. An overview of the applications of graphene-based materials in supercapacitors. Huang Y; Liang J; Chen Y Small; 2012 Jun; 8(12):1805-34. PubMed ID: 22514114 [TBL] [Abstract][Full Text] [Related]
13. Electrochemistry of individual monolayer graphene sheets. Li W; Tan C; Lowe MA; Abruña HD; Ralph DC ACS Nano; 2011 Mar; 5(3):2264-70. PubMed ID: 21332139 [TBL] [Abstract][Full Text] [Related]
14. Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. Ratinac KR; Yang W; Ringer SP; Braet F Environ Sci Technol; 2010 Feb; 44(4):1167-76. PubMed ID: 20099803 [TBL] [Abstract][Full Text] [Related]
15. Unidirectional Photocurrent of Photosystem I on π-System-Modified Graphene Electrodes: Nanobionic Approaches for the Construction of Photobiohybrid Systems. Feifel SC; Lokstein H; Hejazi M; Zouni A; Lisdat F Langmuir; 2015 Sep; 31(38):10590-8. PubMed ID: 26348323 [TBL] [Abstract][Full Text] [Related]
16. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Yuan W; Zhou Y; Li Y; Li C; Peng H; Zhang J; Liu Z; Dai L; Shi G Sci Rep; 2013; 3():2248. PubMed ID: 23896697 [TBL] [Abstract][Full Text] [Related]
18. ssDNA binding reveals the atomic structure of graphene. Husale BS; Sahoo S; Radenovic A; Traversi F; Annibale P; Kis A Langmuir; 2010 Dec; 26(23):18078-82. PubMed ID: 20977263 [TBL] [Abstract][Full Text] [Related]
19. Large-scale production of nanographene sheets with a controlled mesoporous architecture as high-performance electrochemical electrode materials. Zhang H; Zhang X; Sun X; Zhang D; Lin H; Wang C; Wang H; Ma Y ChemSusChem; 2013 Jun; 6(6):1084-90. PubMed ID: 23650181 [TBL] [Abstract][Full Text] [Related]
20. Hierarchically nanoperforated graphene as a high performance electrode material for ultracapacitors. Mhamane D; Suryawanshi A; Unni SM; Rode C; Kurungot S; Ogale S Small; 2013 Aug; 9(16):2801-9. PubMed ID: 23606525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]