These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
785 related articles for article (PubMed ID: 23859899)
1. Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: model development and initial evaluation. Zhang X; Izaurralde RC; Arnold JG; Williams JR; Srinivasan R Sci Total Environ; 2013 Oct; 463-464():810-22. PubMed ID: 23859899 [TBL] [Abstract][Full Text] [Related]
2. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Luo Y; Ficklin DL; Liu X; Zhang M Sci Total Environ; 2013 Apr; 450-451():72-82. PubMed ID: 23467178 [TBL] [Abstract][Full Text] [Related]
3. A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning. Turner DP; Jacobson AR; Ritts WD; Wang WL; Nemani R Glob Chang Biol; 2013 Nov; 19(11):3516-28. PubMed ID: 23824790 [TBL] [Abstract][Full Text] [Related]
4. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. Teshager AD; Gassman PW; Secchi S; Schoof JT; Misgna G Environ Manage; 2016 Apr; 57(4):894-911. PubMed ID: 26616430 [TBL] [Abstract][Full Text] [Related]
5. Multi-scale geospatial agroecosystem modeling: a case study on the influence of soil data resolution on carbon budget estimates. Zhang X; Sahajpal R; Manowitz DH; Zhao K; Leduc SD; Xu M; Xiong W; Zhang A; Izaurralde RC; Thomson AM; West TO; Post WM Sci Total Environ; 2014 May; 479-480():138-50. PubMed ID: 24561293 [TBL] [Abstract][Full Text] [Related]
6. Improving SWAT for simulating water and carbon fluxes of forest ecosystems. Yang Q; Zhang X Sci Total Environ; 2016 Nov; 569-570():1478-1488. PubMed ID: 27401278 [TBL] [Abstract][Full Text] [Related]
7. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. Savage KE; Parton WJ; Davidson EA; Trumbore SE; Frey SD Glob Chang Biol; 2013 Aug; 19(8):2389-400. PubMed ID: 23589498 [TBL] [Abstract][Full Text] [Related]
8. Modeling riverine nitrate export from an East-Central Illinois watershed using SWAT. Hu X; McIsaac GF; David MB; Louwers CA J Environ Qual; 2007; 36(4):996-1005. PubMed ID: 17526878 [TBL] [Abstract][Full Text] [Related]
9. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT. Luo Y; Zhang M Environ Pollut; 2009 Dec; 157(12):3370-8. PubMed ID: 19616876 [TBL] [Abstract][Full Text] [Related]
10. Effect of land-cover change on terrestrial carbon dynamics in the southern United States. Chen H; Tian H; Liu M; Melillo J; Pan S; Zhang C J Environ Qual; 2006; 35(4):1533-47. PubMed ID: 16825474 [TBL] [Abstract][Full Text] [Related]
11. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Liu C; Lu M; Cui J; Li B; Fang C Glob Chang Biol; 2014 May; 20(5):1366-81. PubMed ID: 24395454 [TBL] [Abstract][Full Text] [Related]
12. Quantifying water and CO Anapalli SS; Fisher DK; Reddy KN; Krutz JL; Pinnamaneni SR; Sui R Sci Total Environ; 2019 May; 663():338-350. PubMed ID: 30716624 [TBL] [Abstract][Full Text] [Related]
13. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Fereidoon M; Koch M Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443 [TBL] [Abstract][Full Text] [Related]
14. Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis. Barman R; Jain AK; Liang M Glob Chang Biol; 2014 May; 20(5):1394-411. PubMed ID: 24273031 [TBL] [Abstract][Full Text] [Related]
15. A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Lugato E; Panagos P; Bampa F; Jones A; Montanarella L Glob Chang Biol; 2014 Jan; 20(1):313-26. PubMed ID: 23765562 [TBL] [Abstract][Full Text] [Related]
16. A methodological approach for deriving regional crop rotations as basis for the assessment of the impact of agricultural strategies using soil erosion as example. Lorenz M; Fürst C; Thiel E J Environ Manage; 2013 Sep; 127 Suppl():S37-47. PubMed ID: 23751946 [TBL] [Abstract][Full Text] [Related]
17. Soil carbon sequestration impacts on global climate change and food security. Lal R Science; 2004 Jun; 304(5677):1623-7. PubMed ID: 15192216 [TBL] [Abstract][Full Text] [Related]
18. Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting. West TO; Brandt CC; Baskaran LM; Hellwinckel CM; Mueller R; Bernacchi CJ; Bandaru V; Yang B; Wilson BS; Marland G; Nelson RG; De la Torre Ugarte DG; Post WM Ecol Appl; 2010 Jun; 20(4):1074-86. PubMed ID: 20597291 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet. Sommerlot AR; Pouyan Nejadhashemi A; Woznicki SA; Prohaska MD J Environ Manage; 2013 Oct; 128():735-48. PubMed ID: 23851319 [TBL] [Abstract][Full Text] [Related]
20. Simulating the impacts of land use in northwest Europe on Net Ecosystem Exchange (NEE): the role of arable ecosystems, grasslands and forest plantations in climate change mitigation. Abdalla M; Saunders M; Hastings A; Williams M; Smith P; Osborne B; Lanigan G; Jones MB Sci Total Environ; 2013 Nov; 465():325-36. PubMed ID: 23384575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]