These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
718 related articles for article (PubMed ID: 23859985)
21. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells. Di Domenico EG; Petroni G; Mancini D; Geri A; Di Palma L; Ascenzioni F Biomed Res Int; 2015; 2015():351014. PubMed ID: 26273609 [TBL] [Abstract][Full Text] [Related]
22. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Chung K; Okabe S Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637 [TBL] [Abstract][Full Text] [Related]
23. Sustainable approach for leachate treatment: electricity generation in microbial fuel cell. You SJ; Zhao QL; Jiang JQ; Zhang JN; Zhao SQ J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(12):2721-34. PubMed ID: 17114103 [TBL] [Abstract][Full Text] [Related]
24. Enhanced electricity production by use of reconstituted artificial consortia of estuarine bacteria grown as biofilms. Zhang J; Zhang E; Scott K; Burgess JG Environ Sci Technol; 2012 Mar; 46(5):2984-92. PubMed ID: 22352455 [TBL] [Abstract][Full Text] [Related]
25. Influence of pretreated activated sludge for electricity generation in microbial fuel cell application. Yusoff MZ; Hu A; Feng C; Maeda T; Shirai Y; Hassan MA; Yu CP Bioresour Technol; 2013 Oct; 145():90-6. PubMed ID: 23566463 [TBL] [Abstract][Full Text] [Related]
26. Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations. Zhao G; Ma F; Wei L; Chua H; Chang CC; Zhang XJ Waste Manag; 2012 Sep; 32(9):1651-8. PubMed ID: 22595839 [TBL] [Abstract][Full Text] [Related]
27. Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Feng Y; Yang Q; Wang X; Liu Y; Lee H; Ren N Bioresour Technol; 2011 Jan; 102(1):411-5. PubMed ID: 20889062 [TBL] [Abstract][Full Text] [Related]
28. Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus. Rengasamy K; Berchmans S Bioresour Technol; 2012 Jan; 104():388-93. PubMed ID: 22130075 [TBL] [Abstract][Full Text] [Related]
29. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Chae KJ; Choi MJ; Lee JW; Kim KY; Kim IS Bioresour Technol; 2009 Jul; 100(14):3518-25. PubMed ID: 19345574 [TBL] [Abstract][Full Text] [Related]
30. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Behera M; Ghangrekar MM Bioresour Technol; 2009 Nov; 100(21):5114-21. PubMed ID: 19539466 [TBL] [Abstract][Full Text] [Related]
31. Bacterial communities adapted to higher external resistance can reduce the onset potential of anode in microbial fuel cells. Suzuki K; Kato Y; Yui A; Yamamoto S; Ando S; Rubaba O; Tashiro Y; Futamata H J Biosci Bioeng; 2018 May; 125(5):565-571. PubMed ID: 29373307 [TBL] [Abstract][Full Text] [Related]
32. Electricity generation from mixed volatile fatty acids using microbial fuel cells. Teng SX; Tong ZH; Li WW; Wang SG; Sheng GP; Shi XY; Liu XW; Yu HQ Appl Microbiol Biotechnol; 2010 Aug; 87(6):2365-72. PubMed ID: 20607228 [TBL] [Abstract][Full Text] [Related]
33. Electricity generation and microbial community response to substrate changes in microbial fuel cell. Zhang Y; Min B; Huang L; Angelidaki I Bioresour Technol; 2011 Jan; 102(2):1166-73. PubMed ID: 20952193 [TBL] [Abstract][Full Text] [Related]
34. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells. Cheng S; Liu W; Guo J; Sun D; Pan B; Ye Y; Ding W; Huang H; Li F Biosens Bioelectron; 2014 Jun; 56():264-70. PubMed ID: 24514078 [TBL] [Abstract][Full Text] [Related]
35. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology]. Cai XB; Yang Y; Sun YP; Zhang L; Xiao Y; Zhao H Huan Jing Ke Xue; 2010 Oct; 31(10):2512-7. PubMed ID: 21229770 [TBL] [Abstract][Full Text] [Related]
36. The effects of electrode spacing on the performance of microbial fuel cells under different substrate concentrations. Lee CY; Huang YN Water Sci Technol; 2013; 68(9):2028-34. PubMed ID: 24225104 [TBL] [Abstract][Full Text] [Related]
37. Simultaneous sulfide removal and electricity generation with corn stover biomass as co-substrate in microbial fuel cells. Zhang J; Zhang B; Tian C; Ye Z; Liu Y; Lei Z; Huang W; Feng C Bioresour Technol; 2013 Jun; 138():198-203. PubMed ID: 23612180 [TBL] [Abstract][Full Text] [Related]
38. Testing various food-industry wastes for electricity production in microbial fuel cell. Cercado-Quezada B; Delia ML; Bergel A Bioresour Technol; 2010 Apr; 101(8):2748-54. PubMed ID: 20034785 [TBL] [Abstract][Full Text] [Related]
39. Electricity generation from carbon monoxide and syngas in a microbial fuel cell. Hussain A; Guiot SR; Mehta P; Raghavan V; Tartakovsky B Appl Microbiol Biotechnol; 2011 May; 90(3):827-36. PubMed ID: 21400198 [TBL] [Abstract][Full Text] [Related]
40. [Power generation from glucose and nitrobenzene degradation using the microbial fuel cell]. Li J; Liu GL; Zhang RD; Luo Y; Zhang CP; Li MC; Quan XC Huan Jing Ke Xue; 2010 Nov; 31(11):2811-7. PubMed ID: 21250470 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]