These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23859988)

  • 21. Effect of carbon sources on sulfidogenic bacterial communities during the starting-up of acidogenic sulfate-reducing bioreactors.
    Zhao YG; Wang AJ; Ren NQ
    Bioresour Technol; 2010 May; 101(9):2952-9. PubMed ID: 20056417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of ethanol on sulfate reduction and methanogenesis].
    Wang Q; Liu B; Yan DD; Li S; Chen ZZ
    Huan Jing Ke Xue; 2009 Mar; 30(3):924-9. PubMed ID: 19432352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model experiments on the microbial removal of chromium from contaminated groundwater.
    Vainshtein M; Kuschk P; Mattusch J; Vatsourina A; Wiessner A
    Water Res; 2003 Mar; 37(6):1401-5. PubMed ID: 12598203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor.
    Kaksonen AH; Franzmann PD; Puhakka JA
    Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition.
    Chang IS; Kim BH
    Chemosphere; 2007 Jun; 68(2):218-26. PubMed ID: 17337035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lead removal through biological sulfate reduction process.
    Hien Hoa TT; Liamleam W; Annachhatre AP
    Bioresour Technol; 2007 Sep; 98(13):2538-48. PubMed ID: 17174088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands.
    Stein OR; Borden-Stewart DJ; Hook PB; Jones WL
    Water Res; 2007 Aug; 41(15):3440-8. PubMed ID: 17599383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic treatment for C and S removal in "zero-discharge" paper mills: effects of process design on S removal efficiencies.
    van Lier JB; Lens PN; Pol LW
    Water Sci Technol; 2001; 44(4):189-95. PubMed ID: 11575084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling and evaluation on removal of hexavalent chromium from aqueous systems using fixed bed column.
    Chauhan D; Sankararamakrishnan N
    J Hazard Mater; 2011 Jan; 185(1):55-62. PubMed ID: 20943316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage.
    Burns AS; Pugh CW; Segid YT; Behum PT; Lefticariu L; Bender KS
    Biodegradation; 2012 Jun; 23(3):415-29. PubMed ID: 22083105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brewers draff as a new low-cost sorbent for chromium (VI): comparison with other biosorbents.
    Sillerová H; Komárek M; Chrastný V; Novák M; Vaněk A; Drábek O
    J Colloid Interface Sci; 2013 Apr; 396():227-33. PubMed ID: 23415478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Treatment of H2S using a horizontal biotrickling filter based on biological activated carbon: reactor setup and performance evaluation.
    Duan H; Koe LC; Yan R
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):143-9. PubMed ID: 15538552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent.
    Srivastava S; Thakur IS
    Bioresour Technol; 2006 Jul; 97(10):1167-73. PubMed ID: 16023341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification.
    Janssen AJ; Lens PN; Stams AJ; Plugge CM; Sorokin DY; Muyzer G; Dijkman H; Van Zessen E; Luimes P; Buisman CJ
    Sci Total Environ; 2009 Feb; 407(4):1333-43. PubMed ID: 19027933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the retention of uranyl and thorium ions from radioactive solution on peat moss.
    Humelnicu D; Bulgariu L; Macoveanu M
    J Hazard Mater; 2010 Feb; 174(1-3):782-7. PubMed ID: 19854572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of heavy metal uptake by vegetation immobilized in a polysulfone or polycarbonate polymeric matrix.
    Hardin AM; Admassu W
    J Hazard Mater; 2005 Nov; 126(1-3):40-53. PubMed ID: 16051434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland.
    Mauricio Gutiérrez A; Peña Cabriales JJ; Maldonado Vega M
    Int J Phytoremediation; 2010; 12(4):317-34. PubMed ID: 20734910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pilot-scale removal of chromium from industrial wastewater using the ChromeBac system.
    Ahmad WA; Zakaria ZA; Khasim AR; Alias MA; Ismail SM
    Bioresour Technol; 2010 Jun; 101(12):4371-8. PubMed ID: 20185301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organics, sulfates and ammonia removal from acrylic fiber manufacturing wastewater using a combined Fenton-UASB (2 phase)-SBR system.
    Li J; Luan Z; Yu L; Ji Z
    Bioresour Technol; 2011 Nov; 102(22):10319-26. PubMed ID: 21937223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.