BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 23860226)

  • 1. A carbon-fiber electrode array for long-term neural recording.
    Guitchounts G; Markowitz JE; Liberti WA; Gardner TJ
    J Neural Eng; 2013 Aug; 10(4):046016. PubMed ID: 23860226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings.
    Patel PR; Na K; Zhang H; Kozai TD; Kotov NA; Yoon E; Chestek CA
    J Neural Eng; 2015 Aug; 12(4):046009. PubMed ID: 26035638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo recording of single-unit activity during singing in zebra finches.
    Okubo TS; Mackevicius EL; Fee MS
    Cold Spring Harb Protoc; 2014 Oct; 2014(12):1273-83. PubMed ID: 25342072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological identification of cortico-striatal projection neurons for song control in Bengalese finches.
    Hessler NA; Okanoya K
    Behav Brain Res; 2018 Sep; 349():37-41. PubMed ID: 29709609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Singing-related activity of identified HVC neurons in the zebra finch.
    Kozhevnikov AA; Fee MS
    J Neurophysiol; 2007 Jun; 97(6):4271-83. PubMed ID: 17182906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HTR2 receptors in a songbird premotor cortical-like area modulate spectral characteristics of zebra finch song.
    Wood WE; Roseberry TK; Perkel DJ
    J Neurosci; 2013 Feb; 33(7):2908-15. PubMed ID: 23407949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-density carbon fiber neural recording array technology.
    Massey TL; Santacruz SR; Hou JF; Pister KSJ; Carmena JM; Maharbiz MM
    J Neural Eng; 2019 Feb; 16(1):016024. PubMed ID: 30524060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lightweight feedback-controlled microdrive for chronic neural recordings.
    Jovalekic A; Cavé-Lopez S; Canopoli A; Ondracek JM; Nager A; Vyssotski AL; Hahnloser RH
    J Neural Eng; 2017 Apr; 14(2):026006. PubMed ID: 28071593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic in vivo stability assessment of carbon fiber microelectrode arrays.
    Patel PR; Zhang H; Robbins MT; Nofar JB; Marshall SP; Kobylarek MJ; Kozai TD; Kotov NA; Chestek CA
    J Neural Eng; 2016 Dec; 13(6):066002. PubMed ID: 27705958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The HVC microcircuit: the synaptic basis for interactions between song motor and vocal plasticity pathways.
    Mooney R; Prather JF
    J Neurosci; 2005 Feb; 25(8):1952-64. PubMed ID: 15728835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex.
    Wang C; Brunton E; Haghgooie S; Cassells K; Lowery A; Rajan R
    J Neural Eng; 2013 Aug; 10(4):046010. PubMed ID: 23819958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep-related spike bursts in HVC are driven by the nucleus interface of the nidopallium.
    Hahnloser RH; Fee MS
    J Neurophysiol; 2007 Jan; 97(1):423-35. PubMed ID: 17005618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term decoding stability of local field potentials from silicon arrays in primate motor cortex during a 2D center out task.
    Wang D; Zhang Q; Li Y; Wang Y; Zhu J; Zhang S; Zheng X
    J Neural Eng; 2014 Jun; 11(3):036009. PubMed ID: 24809544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic interactions underlying song-selectivity in the avian nucleus HVC revealed by dual intracellular recordings.
    Rosen MJ; Mooney R
    J Neurophysiol; 2006 Feb; 95(2):1158-75. PubMed ID: 16424457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unstable neurons underlie a stable learned behavior.
    Liberti WA; Markowitz JE; Perkins LN; Liberti DC; Leman DP; Guitchounts G; Velho T; Kotton DN; Lois C; Gardner TJ
    Nat Neurosci; 2016 Dec; 19(12):1665-1671. PubMed ID: 27723744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population-Level Representation of a Temporal Sequence Underlying Song Production in the Zebra Finch.
    Picardo MA; Merel J; Katlowitz KA; Vallentin D; Okobi DE; Benezra SE; Clary RC; Pnevmatikakis EA; Paninski L; Long MA
    Neuron; 2016 May; 90(4):866-76. PubMed ID: 27196976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensemble coding of vocal control in birdsong.
    Leonardo A; Fee MS
    J Neurosci; 2005 Jan; 25(3):652-61. PubMed ID: 15659602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Daily and developmental modulation of "premotor" activity in the birdsong system.
    Day NF; Kinnischtzke AK; Adam M; Nick TA
    Dev Neurobiol; 2009 Oct; 69(12):796-810. PubMed ID: 19650042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.