BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23860759)

  • 1. Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice.
    Nakao S; Arita R; Nakama T; Yoshikawa H; Yoshida S; Enaida H; Hafezi-Moghadam A; Matsui T; Ishibashi T
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5288-93. PubMed ID: 23860759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinal fundus imaging in mouse models of retinal diseases.
    Alex AF; Heiduschka P; Eter N
    Methods Mol Biol; 2013; 935():41-67. PubMed ID: 23150359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-wide-field fluorescein angiography of the ocular fundus.
    Manivannan A; Plskova J; Farrow A; Mckay S; Sharp PF; Forrester JV
    Am J Ophthalmol; 2005 Sep; 140(3):525-7. PubMed ID: 16139004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescein Labeled Leukocytes for
    Agrawal R; Tun SBB; Balne PK; Zhu HY; Khandelwal N; Barathi VA
    Ocul Immunol Inflamm; 2020; 28(1):7-13. PubMed ID: 29470933
    [No Abstract]   [Full Text] [Related]  

  • 5. In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography.
    Giani A; Thanos A; Roh MI; Connolly E; Trichonas G; Kim I; Gragoudas E; Vavvas D; Miller JW
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3880-7. PubMed ID: 21296820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scanning laser ophthalmoscopy and angiography with a wide-field contact lens system.
    Staurenghi G; Viola F; Mainster MA; Graham RD; Harrington PG
    Arch Ophthalmol; 2005 Feb; 123(2):244-52. PubMed ID: 15710823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of retinal and choroidal neovascularization by a novel KDR kinase inhibitor.
    Kinose F; Roscilli G; Lamartina S; Anderson KD; Bonelli F; Spence SG; Ciliberto G; Vogt TF; Holder DJ; Toniatti C; Thut CJ
    Mol Vis; 2005 May; 11():366-73. PubMed ID: 15951738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo imaging with a fundus camera in a rat model of laser-induced choroidal neovascularization.
    Cunea A; Meyer J; Russmann C; Licha K; Welker P; Holz FG; Schmitz-Valckenberg S
    Ophthalmologica; 2014; 231(2):117-23. PubMed ID: 24217349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution of CD115
    Brockmann C; Dege S; Crespo-Garcia S; Kociok N; Brockmann T; Strauß O; Joussen AM
    Graefes Arch Clin Exp Ophthalmol; 2018 Feb; 256(2):313-323. PubMed ID: 29185100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobile Laser Indirect Ophthalmoscope: For the Induction of Choroidal Neovascularization in a Mouse Model.
    Weinberger D; Bor-Shavit E; Barliya T; Dahbash M; Kinrot O; Gaton DD; Nisgav Y; Livnat T
    Curr Eye Res; 2017 Nov; 42(11):1545-1551. PubMed ID: 28933966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A new model of choroidal neovascularization in mice].
    Wang K; Wang K; Wang L; Chen R; Shi H
    Zhonghua Yan Ke Za Zhi; 2002 Dec; 38(12):750-2. PubMed ID: 12654228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse.
    Paques M; Simonutti M; Roux MJ; Picaud S; Levavasseur E; Bellman C; Sahel JA
    Vision Res; 2006 Apr; 46(8-9):1336-45. PubMed ID: 16289196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RhoA activation and effect of Rho-kinase inhibitor in the development of retinal neovascularization in a mouse model of oxygen-induced retinopathy.
    Fang X; Ueno M; Yamashita T; Ikuno Y
    Curr Eye Res; 2011 Nov; 36(11):1028-36. PubMed ID: 21999228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevalence of choroidal naevi using scanning laser ophthalmoscope.
    Gordon-Shaag A; Barnard S; Millodot M; Gantz L; Chiche G; Vanessa E; Ruth W; Pinchasov R; Gosman Z; Simchi M; Koslowe K; Shneor E
    Ophthalmic Physiol Opt; 2014 Jan; 34(1):94-101. PubMed ID: 24325439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chorioretinal topography and histopathology in laser-induced choroidal neovascularization.
    Lai WW; Shahidi M; Mori M; Pulido JS
    Ophthalmic Surg Lasers Imaging; 2003; 34(1):38-43. PubMed ID: 12570003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo quantification of leukocyte behavior in the retina during endotoxin-induced uveitis.
    Miyamoto K; Ogura Y; Hamada M; Nishiwaki H; Hiroshiba N; Honda Y
    Invest Ophthalmol Vis Sci; 1996 Dec; 37(13):2708-15. PubMed ID: 8977486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats.
    Nishiwaki H; Ogura Y; Kimura H; Kiryu J; Miyamoto K; Matsuda N
    Invest Ophthalmol Vis Sci; 1996 Jun; 37(7):1341-7. PubMed ID: 8641837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal-driven angiogenesis: role of NGF in retinal neovascularization in an oxygen-induced retinopathy model.
    Liu X; Wang D; Liu Y; Luo Y; Ma W; Xiao W; Yu Q
    Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3749-57. PubMed ID: 20207957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMG 386, a selective angiopoietin 1/2-neutralizing peptibody, inhibits angiogenesis in models of ocular neovascular diseases.
    Oliner JD; Bready J; Nguyen L; Estrada J; Hurh E; Ma H; Pretorius J; Fanslow W; Nork TM; Leedle RA; Kaufman S; Coxon A
    Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2170-80. PubMed ID: 22410553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoliquiritigenin from licorice root suppressed neovascularisation in experimental ocular angiogenesis models.
    Jhanji V; Liu H; Law K; Lee VY; Huang SF; Pang CP; Yam GH
    Br J Ophthalmol; 2011 Sep; 95(9):1309-15. PubMed ID: 21719569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.