These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 23860829)
1. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Xie W; Liu M; Lv X; Lu W; Gu J; Yu H Biotechnol Bioeng; 2014 Jan; 111(1):125-33. PubMed ID: 23860829 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates. Fathi Z; Tramontin LRR; Ebrahimipour G; Borodina I; Darvishi F FEMS Yeast Res; 2021 Jan; 21(1):. PubMed ID: 33332529 [TBL] [Abstract][Full Text] [Related]
3. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Lange N; Steinbüchel A Appl Microbiol Biotechnol; 2011 Sep; 91(6):1611-22. PubMed ID: 21573686 [TBL] [Abstract][Full Text] [Related]
4. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Guo Y; Dong J; Zhou T; Auxillos J; Li T; Zhang W; Wang L; Shen Y; Luo Y; Zheng Y; Lin J; Chen GQ; Wu Q; Cai Y; Dai J Nucleic Acids Res; 2015 Jul; 43(13):e88. PubMed ID: 25956650 [TBL] [Abstract][Full Text] [Related]
5. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae. Bu X; Lin JY; Duan CQ; Koffas MAG; Yan GL Microb Cell Fact; 2022 Jan; 21(1):3. PubMed ID: 34983533 [TBL] [Abstract][Full Text] [Related]
6. Directed evolution of a highly efficient cellobiose utilizing pathway in an industrial Saccharomyces cerevisiae strain. Yuan Y; Zhao H Biotechnol Bioeng; 2013 Nov; 110(11):2874-81. PubMed ID: 23616289 [TBL] [Abstract][Full Text] [Related]
7. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Zhao Y; Zhang Y; Nielsen J; Liu Z Biotechnol Bioeng; 2021 May; 118(5):2043-2052. PubMed ID: 33605428 [TBL] [Abstract][Full Text] [Related]
8. Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering. Li Q; Sun Z; Li J; Zhang Y FEMS Microbiol Lett; 2013 Aug; 345(2):94-101. PubMed ID: 23718229 [TBL] [Abstract][Full Text] [Related]
9. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae. Zhou P; Xie W; Li A; Wang F; Yao Z; Bian Q; Zhu Y; Yu H; Ye L Enzyme Microb Technol; 2017 May; 100():28-36. PubMed ID: 28284309 [TBL] [Abstract][Full Text] [Related]
10. Induction of point and structural mutations in engineered yeast Saccharomyces cerevisiae improve carotenoid production. Yamada R; Ando K; Sakaguchi R; Matsumoto T; Ogino H World J Microbiol Biotechnol; 2024 Jun; 40(7):230. PubMed ID: 38829459 [TBL] [Abstract][Full Text] [Related]
11. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Sun J; Shao Z; Zhao H; Nair N; Wen F; Xu JH; Zhao H Biotechnol Bioeng; 2012 Aug; 109(8):2082-92. PubMed ID: 22383307 [TBL] [Abstract][Full Text] [Related]
12. High-level β-carotene production from xylose by engineered Saccharomyces cerevisiae without overexpression of a truncated HMG1 (tHMG1). Sun L; Atkinson CA; Lee YG; Jin YS Biotechnol Bioeng; 2020 Nov; 117(11):3522-3532. PubMed ID: 33616900 [TBL] [Abstract][Full Text] [Related]
13. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt. Zhou P; Ye L; Xie W; Lv X; Yu H Appl Microbiol Biotechnol; 2015 Oct; 99(20):8419-28. PubMed ID: 26156241 [TBL] [Abstract][Full Text] [Related]
14. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Verwaal R; Wang J; Meijnen JP; Visser H; Sandmann G; van den Berg JA; van Ooyen AJ Appl Environ Microbiol; 2007 Jul; 73(13):4342-50. PubMed ID: 17496128 [TBL] [Abstract][Full Text] [Related]
15. Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production. Beekwilder J; van Rossum HM; Koopman F; Sonntag F; Buchhaupt M; Schrader J; Hall RD; Bosch D; Pronk JT; van Maris AJ; Daran JM J Biotechnol; 2014 Dec; 192 Pt B():383-92. PubMed ID: 24486029 [TBL] [Abstract][Full Text] [Related]
16. [Construction of high-yield strain by optimizing lycopene cyclase for β-carotene production]. Jin Y; Han L; Zhang S; Li S; Liu W; Tao Y Sheng Wu Gong Cheng Xue Bao; 2017 Nov; 33(11):1814-1826. PubMed ID: 29202518 [TBL] [Abstract][Full Text] [Related]
17. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Yan D; Wang C; Zhou J; Liu Y; Yang M; Xing J Bioresour Technol; 2014 Mar; 156():232-9. PubMed ID: 24508660 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Yamano S; Ishii T; Nakagawa M; Ikenaga H; Misawa N Biosci Biotechnol Biochem; 1994 Jun; 58(6):1112-4. PubMed ID: 7765036 [TBL] [Abstract][Full Text] [Related]
19. Engineering an Artificial Membrane Vesicle Trafficking System (AMVTS) for the Excretion of β-Carotene in Escherichia coli. Wu T; Li S; Ye L; Zhao D; Fan F; Li Q; Zhang B; Bi C; Zhang X ACS Synth Biol; 2019 May; 8(5):1037-1046. PubMed ID: 30990999 [TBL] [Abstract][Full Text] [Related]
20. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]