These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23860834)

  • 1. Attraction and repulsion of spiral waves by inhomogeneity of conduction anisotropy--a model of spiral wave interaction with electrical remodeling of heart tissue.
    Kuklik P; Sanders P; Szumowski L; Żebrowski JJ
    J Biol Phys; 2013 Jan; 39(1):67-80. PubMed ID: 23860834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiral wave breakup in excitable media with an inhomogeneity of conduction anisotropy.
    Kuklik P; Szumowski L; Sanders P; Zebrowski JJ
    Comput Biol Med; 2010 Sep; 40(9):775-80. PubMed ID: 20684951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reentry wave formation in excitable media with stochastically generated inhomogeneities.
    Kuklik P; Zebrowski JJ
    Chaos; 2005 Sep; 15(3):33301. PubMed ID: 16252987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.
    Weise LD; Panfilov AV
    PLoS One; 2011; 6(11):e27264. PubMed ID: 22114667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effective control of excitable waves in 2D cardiac excitable media].
    Li L; Liu L; Zhang G; Wang G; Qu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1104-7. PubMed ID: 16422076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac Conduction Velocity, Remodeling and Arrhythmogenesis.
    Han B; Trew ML; Zgierski-Johnston CM
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiral-wave dynamics depend sensitively on inhomogeneities in mathematical models of ventricular tissue.
    Shajahan TK; Sinha S; Pandit R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011929. PubMed ID: 17358206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiral-wave turbulence and its control in the presence of inhomogeneities in four mathematical models of cardiac tissue.
    Shajahan TK; Nayak AR; Pandit R
    PLoS One; 2009; 4(3):e4738. PubMed ID: 19270753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Termination of pinned vortices by high-frequency wave trains in heartlike excitable media with anisotropic fiber orientation.
    Hörning M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031912. PubMed ID: 23030949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between spiral and paced waves in cardiac tissue.
    Agladze K; Kay MW; Krinsky V; Sarvazyan N
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H503-13. PubMed ID: 17384124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue.
    Steinberg BE; Glass L; Shrier A; Bub G
    Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1299-311. PubMed ID: 16608709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cell geometry on conduction velocity in a subcellular model of myocardium.
    Toure A; Cabo C
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2107-14. PubMed ID: 20501344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scroll-wave dynamics in human cardiac tissue: lessons from a mathematical model with inhomogeneities and fiber architecture.
    Majumder R; Nayak AR; Pandit R
    PLoS One; 2011 Apr; 6(4):e18052. PubMed ID: 21483682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of cardiac tissue alignment in modulating electrical function.
    Chung CY; Bien H; Entcheva E
    J Cardiovasc Electrophysiol; 2007 Dec; 18(12):1323-9. PubMed ID: 17916158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core.
    Beaumont J; Davidenko N; Davidenko JM; Jalife J
    Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue.
    Boccia E; Luther S; Parlitz U
    Philos Trans A Math Phys Eng Sci; 2017 Jun; 375(2096):. PubMed ID: 28507234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connexins and cardiac arrhythmias.
    van Rijen HVM; van Veen TAB; Gros D; Wilders R; de Bakker JMT
    Adv Cardiol; 2006; 42():150-160. PubMed ID: 16646589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Termination of atrial spiral waves by traction into peripheral non 1:1 conducting regions - A numerical study.
    Rozner A; Zlochiver S
    Med Eng Phys; 2016 Nov; 38(11):1322-1329. PubMed ID: 27614722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling defibrillation: effects of fiber curvature.
    Trayanova N; Skouibine K
    J Electrocardiol; 1998; 31 Suppl():23-9. PubMed ID: 9988001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.