These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23860913)

  • 1. Conformational properties of interacting neurofilaments: Monte Carlo simulations of cylindrically grafted apposing neurofilament brushes.
    Jayanthi L; Stevenson W; Kwak Y; Chang R; Gebremichael Y
    J Biol Phys; 2013 Jun; 39(3):343-62. PubMed ID: 23860913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation-mediated conformational changes in the mouse neurofilament architecture: insight from a neurofilament brush model.
    Stevenson W; Chang R; Gebremichael Y
    J Mol Biol; 2011 Jan; 405(4):1101-18. PubMed ID: 21134382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture.
    Chang R; Kwak Y; Gebremichael Y
    J Mol Biol; 2009 Aug; 391(3):648-60. PubMed ID: 19559031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relating interactions between neurofilaments to the structure of axonal neurofilament distributions through polymer brush models.
    Kumar S; Yin X; Trapp BD; Hoh JH; Paulaitis ME
    Biophys J; 2002 May; 82(5):2360-72. PubMed ID: 11964226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of molecular model, ionic strength, divalent ions, and hydrophobic interaction on human neurofilament conformation.
    Lee J; Kim S; Chang R; Jayanthi L; Gebremichael Y
    J Chem Phys; 2013 Jan; 138(1):015103. PubMed ID: 23298063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurofilament stoichiometry simulations during neurodegeneration suggest a remarkable self-sufficient and stable in vivo protein structure.
    Kim S; Chang R; Teunissen C; Gebremichael Y; Petzold A
    J Neurol Sci; 2011 Aug; 307(1-2):132-8. PubMed ID: 21601889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational dynamics of neurofilament side-arms.
    Stevens MJ; Hoh JH
    J Phys Chem B; 2010 Jul; 114(27):8879-86. PubMed ID: 20557103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entropic exclusion by neurofilament sidearms: a mechanism for maintaining interfilament spacing.
    Brown HG; Hoh JH
    Biochemistry; 1997 Dec; 36(49):15035-40. PubMed ID: 9424114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between planar grafted neurofilament side-arms.
    Stevens MJ; Hoh JH
    J Phys Chem B; 2011 Jun; 115(23):7541-9. PubMed ID: 21598932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of neurofilament interactions in vitro by natural and synthetic polypeptides sharing Lys-Ser-Pro sequences with the heavy neurofilament subunit NF-H: neurofilament crossbridging by antiparallel sidearm overlapping.
    Gou JP; Gotow T; Janmey PA; Leterrier JF
    Med Biol Eng Comput; 1998 May; 36(3):371-87. PubMed ID: 9747580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurofilament sidearms modulate parallel and crossed-filament orientations inducing nematic to isotropic and re-entrant birefringent hydrogels.
    Deek J; Chung PJ; Kayser J; Bausch AR; Safinya CR
    Nat Commun; 2013; 4():2224. PubMed ID: 23892390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A self-consistent field analysis of the neurofilament brush with amino-acid resolution.
    Zhulina EB; Leermakers FA
    Biophys J; 2007 Sep; 93(5):1421-30. PubMed ID: 17513356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of repulsive forces between neurofilaments by sidearm phosphorylation.
    Kumar S; Hoh JH
    Biochem Biophys Res Commun; 2004 Nov; 324(2):489-96. PubMed ID: 15474454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-terminal neurofilament phosphorylation fosters neurofilament-neurofilament associations that compete with axonal transport.
    Lee S; Sunil N; Shea TB
    Cytoskeleton (Hoboken); 2011 Jan; 68(1):8-17. PubMed ID: 20862740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons.
    Pijak DS; Hall GF; Tenicki PJ; Boulos AS; Lurie DI; Selzer ME
    J Comp Neurol; 1996 May; 368(4):569-81. PubMed ID: 8744444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between liquid crystalline and isotropic gels in self-assembled neurofilament networks.
    Jones JB; Safinya CR
    Biophys J; 2008 Jul; 95(2):823-35. PubMed ID: 18583309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: a merging of opposing hypotheses.
    Shea TB; Lee S
    Cytoskeleton (Hoboken); 2011 Nov; 68(11):589-95. PubMed ID: 21990272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of mitochondria-neurofilament interactions.
    Wagner OI; Lifshitz J; Janmey PA; Linden M; McIntosh TK; Leterrier JF
    J Neurosci; 2003 Oct; 23(27):9046-58. PubMed ID: 14534238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber.
    Nixon RA; Paskevich PA; Sihag RK; Thayer CY
    J Cell Biol; 1994 Aug; 126(4):1031-46. PubMed ID: 7519617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lamprey neurofilaments combine in one subunit the features of each mammalian NF triplet protein but are highly phosphorylated only in large axons.
    Pleasure SJ; Selzer ME; Lee VM
    J Neurosci; 1989 Feb; 9(2):698-709. PubMed ID: 2493079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.