BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23861008)

  • 1. Modulation of protein stability and aggregation properties by surface charge engineering.
    Raghunathan G; Sokalingam S; Soundrarajan N; Madan B; Munussami G; Lee SG
    Mol Biosyst; 2013 Sep; 9(9):2379-89. PubMed ID: 23861008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein stability and surface electrostatics: a charged relationship.
    Strickler SS; Gribenko AV; Gribenko AV; Keiffer TR; Tomlinson J; Reihle T; Loladze VV; Makhatadze GI
    Biochemistry; 2006 Mar; 45(9):2761-6. PubMed ID: 16503630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability.
    Der BS; Kluwe C; Miklos AE; Jacak R; Lyskov S; Gray JJ; Georgiou G; Ellington AD; Kuhlman B
    PLoS One; 2013; 8(5):e64363. PubMed ID: 23741319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why are proteins charged? Networks of charge-charge interactions in proteins measured by charge ladders and capillary electrophoresis.
    Gitlin I; Carbeck JD; Whitesides GM
    Angew Chem Int Ed Engl; 2006 May; 45(19):3022-60. PubMed ID: 16619322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins.
    Gribenko AV; Makhatadze GI
    J Mol Biol; 2007 Feb; 366(3):842-56. PubMed ID: 17188709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein stabilization by the rational design of surface charge-charge interactions.
    Schweiker KL; Makhatadze GI
    Methods Mol Biol; 2009; 490():261-83. PubMed ID: 19157087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic consequences of native state optimization of surface-exposed electrostatic interactions in the Fyn SH3 domain.
    Zarrine-Afsar A; Zhang Z; Schweiker KL; Makhatadze GI; Davidson AR; Chan HS
    Proteins; 2012 Mar; 80(3):858-70. PubMed ID: 22161863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of buried ionizable groups in proteins with engineered surface charge.
    Pey AL; Rodriguez-Larrea D; Gavira JA; Garcia-Moreno B; Sanchez-Ruiz JM
    J Am Chem Soc; 2010 Feb; 132(4):1218-9. PubMed ID: 20055447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational approach for the rational design of stable proteins and enzymes: optimization of surface charge-charge interactions.
    Schweiker KL; Makhatadze GI
    Methods Enzymol; 2009; 454():175-211. PubMed ID: 19216927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salting the charged surface: pH and salt dependence of protein G B1 stability.
    Lindman S; Xue WF; Szczepankiewicz O; Bauer MC; Nilsson H; Linse S
    Biophys J; 2006 Apr; 90(8):2911-21. PubMed ID: 16443658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface charge alteration on stability of L-asparaginase II from Escherichia sp.
    Vidya J; Ushasree MV; Pandey A
    Enzyme Microb Technol; 2014 Mar; 56():15-9. PubMed ID: 24564897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of site-directed point mutations in protein misfolding.
    Baruah A; Biswas P
    Phys Chem Chem Phys; 2014 Jul; 16(27):13964-73. PubMed ID: 24898496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonnative electrostatic interactions can modulate protein folding: molecular dynamics with a grain of salt.
    Azia A; Levy Y
    J Mol Biol; 2009 Oct; 393(2):527-42. PubMed ID: 19683007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics.
    Aliye N; Fabbretti A; Lupidi G; Tsekoa T; Spurio R
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1205-16. PubMed ID: 25112226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why are proteins so robust to site mutations?
    Taverna DM; Goldstein RA
    J Mol Biol; 2002 Jan; 315(3):479-84. PubMed ID: 11786027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversal of negative charges on the surface of Escherichia coli thioredoxin: pockets versus protrusions.
    Mancusso R; Cruz E; Cataldi M; Mendoza C; Fuchs J; Wang H; Yang X; Tasayco ML
    Biochemistry; 2004 Apr; 43(13):3835-43. PubMed ID: 15049690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TKSA-MC: A web server for rational mutation through the optimization of protein charge interactions.
    Contessoto VG; de Oliveira VM; Fernandes BR; Slade GG; Leite VBP
    Proteins; 2018 Nov; 86(11):1184-1188. PubMed ID: 30218467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    BMC Evol Biol; 2006 May; 6():43. PubMed ID: 16737532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.