These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 23861256)
1. Enhanced adhesion of preosteoblasts inside 3D PCL scaffolds by polydopamine coating and mineralization. Jo S; Kang SM; Park SA; Kim WD; Kwak J; Lee H Macromol Biosci; 2013 Oct; 13(10):1389-95. PubMed ID: 23861256 [TBL] [Abstract][Full Text] [Related]
2. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [TBL] [Abstract][Full Text] [Related]
3. A bioactive "self-fitting" shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Zhang D; George OJ; Petersen KM; Jimenez-Vergara AC; Hahn MS; Grunlan MA Acta Biomater; 2014 Nov; 10(11):4597-4605. PubMed ID: 25063999 [TBL] [Abstract][Full Text] [Related]
4. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications. Kharaziha M; Fathi MH; Edris H Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153 [TBL] [Abstract][Full Text] [Related]
5. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577 [TBL] [Abstract][Full Text] [Related]
6. Pore size and LbL chitosan coating influence mesenchymal stem cell in vitro fibrosis and biomineralization in 3D porous poly(epsilon-caprolactone) scaffolds. Mehr NG; Li X; Chen G; Favis BD; Hoemann CD J Biomed Mater Res A; 2015 Jul; 103(7):2449-59. PubMed ID: 25504184 [TBL] [Abstract][Full Text] [Related]
7. A micro-scale surface-structured PCL scaffold fabricated by a 3D plotter and a chemical blowing agent. Yoon H; Kim GH; Koh YH J Biomater Sci Polym Ed; 2010; 21(2):159-70. PubMed ID: 20092682 [TBL] [Abstract][Full Text] [Related]
8. Surfactant as a critical factor when tuning the hydrophilicity in three-dimensional polyester-based scaffolds: impact of hydrophilicity on their mechanical properties and the cellular response of human osteoblast-like cells. Sun Y; Xing Z; Xue Y; Mustafa K; Finne-Wistrand A; Albertsson AC Biomacromolecules; 2014 Apr; 15(4):1259-68. PubMed ID: 24559372 [TBL] [Abstract][Full Text] [Related]
9. Highly roughened polycaprolactone surfaces using oxygen plasma-etching and in vitro mineralization for bone tissue regeneration: fabrication, characterization, and cellular activities. Kim Y; Kim G Colloids Surf B Biointerfaces; 2015 Jan; 125():181-9. PubMed ID: 25486326 [TBL] [Abstract][Full Text] [Related]
10. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
11. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction. Sharma S; Gupta D; Mohanty S; Jassal M; Agrawal AK; Tandon R Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):899-907. PubMed ID: 24425860 [TBL] [Abstract][Full Text] [Related]
12. Collagen-coated poly(L-lactide-co-ɛ-caprolactone) film: a promising scaffold for cultured periosteal sheets. Kawase T; Yamanaka K; Suda Y; Kaneko T; Okuda K; Kogami H; Nakayama H; Nagata M; Wolff LF; Yoshie H J Periodontol; 2010 Nov; 81(11):1653-62. PubMed ID: 20629552 [TBL] [Abstract][Full Text] [Related]
13. Polydopamine-Decorated Sticky, Water-Friendly, Biodegradable Polycaprolactone Cell Carriers. Kim M; Kim JS; Lee H; Jang JH Macromol Biosci; 2016 May; 16(5):738-47. PubMed ID: 26799057 [TBL] [Abstract][Full Text] [Related]
14. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
15. In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application. Fu S; Yang L; Fan J; Wen Q; Lin S; Wang B; Chen L; Meng X; Chen Y; Wu J Colloids Surf B Biointerfaces; 2013 Jul; 107():167-73. PubMed ID: 23500727 [TBL] [Abstract][Full Text] [Related]
16. Three dimensional melt-deposition of polycaprolactone/bio-derived hydroxyapatite composite into scaffold for bone repair. Jiang W; Shi J; Li W; Sun K J Biomater Sci Polym Ed; 2013; 24(5):539-50. PubMed ID: 23565866 [TBL] [Abstract][Full Text] [Related]
17. Mussel-inspired polydopamine-mediated surface modification of freeze-cast poly (ε-caprolactone) scaffolds for bone tissue engineering applications. Ghorbani F; Zamanian A; Sahranavard M Biomed Tech (Berl); 2020 May; 65(3):273-287. PubMed ID: 31655791 [TBL] [Abstract][Full Text] [Related]
18. Increasing the bioactivity of elastomeric poly(ε-caprolactone) scaffolds for use in tissue engineering. Huot S; Rohman G; Riffault M; Pinzano A; Grossin L; Migonney V Biomed Mater Eng; 2013; 23(4):281-8. PubMed ID: 23798649 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Park SA; Lee SH; Kim WD Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553 [TBL] [Abstract][Full Text] [Related]
20. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Jiang CP; Chen YY; Hsieh MF; Lee HM Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]