BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 23861442)

  • 1. An intronic structure enabled by a long-distance interaction serves as a novel target for splicing correction in spinal muscular atrophy.
    Singh NN; Lawler MN; Ottesen EW; Upreti D; Kaczynski JR; Singh RN
    Nucleic Acids Res; 2013 Sep; 41(17):8144-65. PubMed ID: 23861442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions.
    Singh NN; Lee BM; Singh RN
    Ann N Y Acad Sci; 2015 Apr; 1341():176-87. PubMed ID: 25727246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice.
    Hua Y; Vickers TA; Okunola HL; Bennett CF; Krainer AR
    Am J Hum Genet; 2008 Apr; 82(4):834-48. PubMed ID: 18371932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron.
    Singh NK; Singh NN; Androphy EJ; Singh RN
    Mol Cell Biol; 2006 Feb; 26(4):1333-46. PubMed ID: 16449646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolving concepts on human SMN pre-mRNA splicing.
    Singh RN
    RNA Biol; 2007; 4(1):7-10. PubMed ID: 17592254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy.
    Pedrotti S; Bielli P; Paronetto MP; Ciccosanti F; Fimia GM; Stamm S; Manley JL; Sette C
    EMBO J; 2010 Apr; 29(7):1235-47. PubMed ID: 20186123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2.
    Cartegni L; Hastings ML; Calarco JA; de Stanchina E; Krainer AR
    Am J Hum Genet; 2006 Jan; 78(1):63-77. PubMed ID: 16385450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy.
    Osman EY; Yen PF; Lorson CL
    Mol Ther; 2012 Jan; 20(1):119-26. PubMed ID: 22031236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes.
    Singh RN; Singh NN
    Adv Neurobiol; 2018; 20():31-61. PubMed ID: 29916015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene.
    Seo J; Singh NN; Ottesen EW; Sivanesan S; Shishimorova M; Singh RN
    PLoS One; 2016; 11(4):e0154390. PubMed ID: 27111068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing.
    Kashima T; Rao N; David CJ; Manley JL
    Hum Mol Genet; 2007 Dec; 16(24):3149-59. PubMed ID: 17884807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy.
    Singh NN; Shishimorova M; Cao LC; Gangwani L; Singh RN
    RNA Biol; 2009; 6(3):341-50. PubMed ID: 19430205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An extended inhibitory context causes skipping of exon 7 of SMN2 in spinal muscular atrophy.
    Singh NN; Androphy EJ; Singh RN
    Biochem Biophys Res Commun; 2004 Mar; 315(2):381-8. PubMed ID: 14766219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene.
    Singh NN; Del Rio-Malewski JB; Luo D; Ottesen EW; Howell MD; Singh RN
    Nucleic Acids Res; 2017 Dec; 45(21):12214-12240. PubMed ID: 28981879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy.
    Kashima T; Manley JL
    Nat Genet; 2003 Aug; 34(4):460-3. PubMed ID: 12833158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model.
    Singh NN; Singh RN
    RNA Biol; 2011; 8(4):600-6. PubMed ID: 21654213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A splicing silencer in SMN2 intron 6 is critical in spinal muscular atrophy.
    Wang L; Ji Y; Chen Y; Bai J; Gao P; Feng P
    Hum Mol Genet; 2023 Mar; 32(6):971-983. PubMed ID: 36255739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal muscular atrophy: a new player joins the battle for SMN2 exon 7 splicing.
    Pedrotti S; Sette C
    Cell Cycle; 2010 Oct; 9(19):3874-9. PubMed ID: 20890126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes.
    Singh NN; Seo J; Rahn SJ; Singh RN
    PLoS One; 2012; 7(11):e49595. PubMed ID: 23185376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes.
    Singh NN; Singh RN; Androphy EJ
    Nucleic Acids Res; 2007; 35(2):371-89. PubMed ID: 17170000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.