BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23861875)

  • 1. Developmental adaptation of central nervous system to extremely high acetylcholine levels.
    Farar V; Hrabovska A; Krejci E; Myslivecek J
    PLoS One; 2013; 8(7):e68265. PubMed ID: 23861875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase.
    Farar V; Mohr F; Legrand M; Lamotte d'Incamps B; Cendelin J; Leroy J; Abitbol M; Bernard V; Baud F; Fournet V; Houze P; Klein J; Plaud B; Tuma J; Zimmermann M; Ascher P; Hrabovska A; Myslivecek J; Krejci E
    J Neurochem; 2012 Sep; 122(5):1065-80. PubMed ID: 22747514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The PRiMA-linked cholinesterase tetramers are assembled from homodimers: hybrid molecules composed of acetylcholinesterase and butyrylcholinesterase dimers are up-regulated during development of chicken brain.
    Chen VP; Xie HQ; Chan WKB; Leung KW; Chan GKL; Choi RCY; Bon S; Massoulié J; Tsim KWK
    J Biol Chem; 2010 Aug; 285(35):27265-27278. PubMed ID: 20566626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice.
    Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J
    Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The AChE membrane-binding tail PRiMA is down-regulated in muscle and nerve of mice with muscular dystrophy by merosin deficiency.
    Vidal CJ; Montenegro MF; Muñoz-Delgado E; Campoy FJ; Cabezas-Herrera J; Moral-Naranjo MT
    Chem Biol Interact; 2013 Mar; 203(1):330-4. PubMed ID: 22906800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRNA Levels of ACh-Related Enzymes in the Hippocampus of THY-Tau22 Mouse: A Model of Human Tauopathy with No Signs of Motor Disturbance.
    García-Gómez BE; Fernández-Gómez FJ; Muñoz-Delgado E; Buée L; Blum D; Vidal CJ
    J Mol Neurosci; 2016 Apr; 58(4):411-5. PubMed ID: 26697857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mice lacking individual molecular forms of cholinesterases].
    Kučera M; Hrabovská A
    Ceska Slov Farm; 2016; 65(2):52-63. PubMed ID: 27356594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dysfunctional Presynaptic M2 Receptors in the Presence of Chronically High Acetylcholine Levels: Data from the PRiMA Knockout Mouse.
    Mohr F; Krejci E; Zimmermann M; Klein J
    PLoS One; 2015; 10(10):e0141136. PubMed ID: 26506622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity.
    Hartmann J; Kiewert C; Duysen EG; Lockridge O; Greig NH; Klein J
    J Neurochem; 2007 Mar; 100(5):1421-9. PubMed ID: 17212694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct localization of collagen Q and PRiMA forms of acetylcholinesterase at the neuromuscular junction.
    Bernard V; Girard E; Hrabovska A; Camp S; Taylor P; Plaud B; Krejci E
    Mol Cell Neurosci; 2011 Jan; 46(1):272-81. PubMed ID: 20883790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine.
    Mesulam MM; Guillozet A; Shaw P; Levey A; Duysen EG; Lockridge O
    Neuroscience; 2002; 110(4):627-39. PubMed ID: 11934471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase.
    Petrov KA; Girard E; Nikitashina AD; Colasante C; Bernard V; Nurullin L; Leroy J; Samigullin D; Colak O; Nikolsky E; Plaud B; Krejci E
    J Neurosci; 2014 Sep; 34(36):11870-83. PubMed ID: 25186736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice.
    Adler M; Manley HA; Purcell AL; Deshpande SS; Hamilton TA; Kan RK; Oyler G; Lockridge O; Duysen EG; Sheridan RE
    Muscle Nerve; 2004 Sep; 30(3):317-27. PubMed ID: 15318343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of muscarinic acetylcholine receptor function in acetylcholinesterase knockout mice.
    Li B; Duysen EG; Volpicelli-Daley LA; Levey AI; Lockridge O
    Pharmacol Biochem Behav; 2003 Mar; 74(4):977-86. PubMed ID: 12667913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of PRiMA in the mouse brain: membrane anchoring and accumulation of 'tailed' acetylcholinesterase.
    Perrier NA; Khérif S; Perrier AL; Dumas S; Mallet J; Massoulié J
    Eur J Neurosci; 2003 Oct; 18(7):1837-47. PubMed ID: 14622217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic activation of the murine trachealis muscle via non-vesicular acetylcholine release involving low-affinity choline transporters.
    Nassenstein C; Wiegand S; Lips KS; Li G; Klein J; Kummer W
    Int Immunopharmacol; 2015 Nov; 29(1):173-80. PubMed ID: 26278668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain region-specific effects of immobilization stress on cholinesterases in mice.
    Valuskova P; Farar V; Janisova K; Ondicova K; Mravec B; Kvetnansky R; Myslivecek J
    Stress; 2017 Jan; 20(1):36-43. PubMed ID: 27873537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-asarone improves striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice.
    Qiu G; Chen S; Guo J; Wu J; Yi YH
    Behav Brain Res; 2016 Oct; 312():212-8. PubMed ID: 27316341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulated cholinergic network as a novel biomarker of poor prognostic in patients with head and neck squamous cell carcinoma.
    Castillo-González AC; Nieto-Cerón S; Pelegrín-Hernández JP; Montenegro MF; Noguera JA; López-Moreno MF; Rodríguez-López JN; Vidal CJ; Hellín-Meseguer D; Cabezas-Herrera J
    BMC Cancer; 2015 May; 15():385. PubMed ID: 25956553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of butyrylcholinesterase knockout mice to (--)-huperzine A and donepezil suggests humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer's disease drugs and indicates butyrylcholinesterase function in neurotransmission.
    Duysen EG; Li B; Darvesh S; Lockridge O
    Toxicology; 2007 Apr; 233(1-3):60-9. PubMed ID: 17194517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.