BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23861877)

  • 21. Aescin Protects Neuron from Ischemia-Reperfusion Injury via Regulating the PRAS40/mTOR Signaling Pathway.
    Gao X; Yang H; Su J; Xiao W; Ni W; Gu Y
    Oxid Med Cell Longev; 2020; 2020():7815325. PubMed ID: 33062146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fetal brain mTOR signaling activation in tuberous sclerosis complex.
    Tsai V; Parker WE; Orlova KA; Baybis M; Chi AW; Berg BD; Birnbaum JF; Estevez J; Okochi K; Sarnat HB; Flores-Sarnat L; Aronica E; Crino PB
    Cereb Cortex; 2014 Feb; 24(2):315-27. PubMed ID: 23081885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hypoxia Increases IGFBP-1 Phosphorylation Mediated by mTOR Inhibition.
    Damerill I; Biggar KK; Abu Shehab M; Li SS; Jansson T; Gupta MB
    Mol Endocrinol; 2016 Feb; 30(2):201-16. PubMed ID: 26714229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. cPKCγ-mediated down-regulation of UCHL1 alleviates ischaemic neuronal injuries by decreasing autophagy via ERK-mTOR pathway.
    Zhang D; Han S; Wang S; Luo Y; Zhao L; Li J
    J Cell Mol Med; 2017 Dec; 21(12):3641-3657. PubMed ID: 28726275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. cPKCγ-Modulated Sequential Reactivation of mTOR Inhibited Autophagic Flux in Neurons Exposed to Oxygen Glucose Deprivation/Reperfusion.
    Hua R; Han S; Zhang N; Dai Q; Liu T; Li J
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting of mTORC2 may have advantages over selective targeting of mTORC1 in the treatment of malignant pheochromocytoma.
    Zhang X; Wang X; Xu T; Zhong S; Shen Z
    Tumour Biol; 2015 Jul; 36(7):5273-81. PubMed ID: 25666752
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autoregulation of the mechanistic target of rapamycin (mTOR) complex 2 integrity is controlled by an ATP-dependent mechanism.
    Chen CH; Kiyan V; Zhylkibayev AA; Kazyken D; Bulgakova O; Page KE; Bersimbaev RI; Spooner E; Sarbassov DD
    J Biol Chem; 2013 Sep; 288(38):27019-27030. PubMed ID: 23928304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuro-Protective Role of Metformin in Patients with Acute Stroke and Type 2 Diabetes Mellitus via AMPK/Mammalian Target of Rapamycin (mTOR) Signaling Pathway and Oxidative Stress.
    Zhao M; Li XW; Chen Z; Hao F; Tao SX; Yu HY; Cheng R; Liu H
    Med Sci Monit; 2019 Mar; 25():2186-2194. PubMed ID: 30905926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth.
    Koo J; Wang X; Owonikoko TK; Ramalingam SS; Khuri FR; Sun SY
    Oncotarget; 2015 Apr; 6(11):8974-87. PubMed ID: 25797247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuroprotective effect of licochalcone A against oxygen-glucose deprivation/reperfusion in rat primary cortical neurons by attenuating oxidative stress injury and inflammatory response via the SIRT1/Nrf2 pathway.
    Liu X; Ma Y; Wei X; Fan T
    J Cell Biochem; 2018 Apr; 119(4):3210-3219. PubMed ID: 29105819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [mTORC1 and sirolimus: a link with fertility].
    Tartarin P; Froment P
    Med Sci (Paris); 2013 Feb; 29(2):200-5. PubMed ID: 23452608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the novel mTOR inhibitor AZD2014 in neuronal ischemia.
    Hadley G; Beard DJ; Alexopoulou Z; Sutherland BA; Buchan AM
    Neurosci Lett; 2019 Jul; 706():223-230. PubMed ID: 31100427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of mTOR pathway restrains astrocyte proliferation, migration and production of inflammatory mediators after oxygen-glucose deprivation and reoxygenation.
    Li CY; Li X; Liu SF; Qu WS; Wang W; Tian DS
    Neurochem Int; 2015; 83-84():9-18. PubMed ID: 25770080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin.
    Zou Z; Chen J; Yang J; Bai X
    Curr Cancer Drug Targets; 2016; 16(4):288-304. PubMed ID: 26563881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival.
    Ma S; Venkatesh A; Langellotto F; Le YZ; Hall MN; Rüegg MA; Punzo C
    Exp Eye Res; 2015 Jun; 135():1-13. PubMed ID: 25887293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic deletion of Rhes or pharmacological blockade of mTORC1 prevent striato-nigral neurons activation in levodopa-induced dyskinesia.
    Brugnoli A; Napolitano F; Usiello A; Morari M
    Neurobiol Dis; 2016 Jan; 85():155-163. PubMed ID: 26522958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Enigma of Rapamycin Dosage.
    Mukhopadhyay S; Frias MA; Chatterjee A; Yellen P; Foster DA
    Mol Cancer Ther; 2016 Mar; 15(3):347-53. PubMed ID: 26916116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuroprotection by nicotinamide mononucleotide adenylyltransferase 1 with involvement of autophagy in an aged rat model of transient cerebral ischemia and reperfusion.
    Wang P; Lu Y; Han D; Wang P; Ren L; Bi J; Liang J
    Brain Res; 2019 Nov; 1723():146391. PubMed ID: 31421130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protective effect of autophagy inhibition on ischemia-reperfusion-induced injury of N2a cells.
    Wang ZQ; Yang Y; Lu T; Luo P; Li J; Wu JP; Tang ZZ; Lu QP; Duan QH
    J Huazhong Univ Sci Technolog Med Sci; 2013 Dec; 33(6):810-816. PubMed ID: 24337840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potent dual inhibitors of TORC1 and TORC2 complexes (KU-0063794 and KU-0068650) demonstrate in vitro and ex vivo anti-keloid scar activity.
    Syed F; Sanganee HJ; Singh S; Bahl A; Bayat A
    J Invest Dermatol; 2013 May; 133(5):1340-50. PubMed ID: 23303455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.