BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23861894)

  • 1. Immune modulation by different types of β2→1-fructans is toll-like receptor dependent.
    Vogt L; Ramasamy U; Meyer D; Pullens G; Venema K; Faas MM; Schols HA; de Vos P
    PLoS One; 2013; 8(7):e68367. PubMed ID: 23861894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and function of Toll-like receptors in peripheral blood mononuclear cells from patients with ovarian cancer.
    Zhang X; Xu J; Ke X; Zhang S; Huang P; Xu T; Huang L; Lou J; Shi X; Sun R; Wang F; Pan S
    Cancer Immunol Immunother; 2015 Mar; 64(3):275-86. PubMed ID: 25376541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exopolysaccharide β-(2,6)-levan-type fructans have a molecular-weight-dependent modulatory effect on Toll-like receptor signalling.
    Akkerman R; Oerlemans MMP; Ferrari M; Fernández-Lainez C; de Haan BJ; Faas MM; Walvoort MTC; de Vos P
    Food Funct; 2024 Jan; 15(2):676-688. PubMed ID: 38108152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipopolysaccharide associated with β-2,6 fructan mediates TLR4-dependent immunomodulatory activity in vitro.
    Young ID; Nepogodiev SA; Black IM; Le Gall G; Wittmann A; Latousakis D; Visnapuu T; Azadi P; Field RA; Juge N; Kawasaki N
    Carbohydr Polym; 2022 Feb; 277():118606. PubMed ID: 34893207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary N-Glycans from Bovine Lactoferrin and TLR Modulation.
    Figueroa-Lozano S; Valk-Weeber RL; van Leeuwen SS; Dijkhuizen L; de Vos P
    Mol Nutr Food Res; 2018 Jan; 62(2):. PubMed ID: 28971586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inulin-Type Fructans Modulates Pancreatic-Gut Innate Immune Responses and Gut Barrier Integrity during Experimental Acute Pancreatitis in a Chain Length-Dependent Manner.
    He Y; Wu C; Li J; Li H; Sun Z; Zhang H; de Vos P; Pan LL; Sun J
    Front Immunol; 2017; 8():1209. PubMed ID: 29018453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β(2→1) chicory and β(2→1)-β(2→6) agave fructans protect the human intestinal barrier function
    Fernández-Lainez C; Logtenberg MJ; Tang X; Schols HA; López-Velázquez G; de Vos P
    Food Funct; 2022 Jun; 13(12):6737-6748. PubMed ID: 35665791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cell Specific Effect of MBOAT7 MAFLD-risk Variant on Immune Cells.
    Pan Z; Alharthi J; Bayoumi A; George J; Eslam M
    Front Biosci (Landmark Ed); 2024 Apr; 29(4):148. PubMed ID: 38682204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toll-like receptor 2 activation by β2→1-fructans protects barrier function of T84 human intestinal epithelial cells in a chain length-dependent manner.
    Vogt LM; Meyer D; Pullens G; Faas MM; Venema K; Ramasamy U; Schols HA; de Vos P
    J Nutr; 2014 Jul; 144(7):1002-8. PubMed ID: 24790027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of dietary fibers on dendritic cell responses in vitro is dependent on the differential effects of the fibers on intestinal epithelial cells.
    Bermudez-Brito M; Sahasrabudhe NM; Rösch C; Schols HA; Faas MM; de Vos P
    Mol Nutr Food Res; 2015 Apr; 59(4):698-710. PubMed ID: 25620425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunological properties of inulin-type fructans.
    Vogt L; Meyer D; Pullens G; Faas M; Smelt M; Venema K; Ramasamy U; Schols HA; De Vos P
    Crit Rev Food Sci Nutr; 2015; 55(3):414-36. PubMed ID: 24915372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial tryptophan catabolites in health and disease.
    Roager HM; Licht TR
    Nat Commun; 2018 Aug; 9(1):3294. PubMed ID: 30120222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of bile acids in the gut-liver axis.
    Schneider KM; Albers S; Trautwein C
    J Hepatol; 2018 May; 68(5):1083-1085. PubMed ID: 29519549
    [No Abstract]   [Full Text] [Related]  

  • 14. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism.
    Gao J; Xu K; Liu H; Liu G; Bai M; Peng C; Li T; Yin Y
    Front Cell Infect Microbiol; 2018; 8():13. PubMed ID: 29468141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis.
    Jia W; Xie G; Jia W
    Nat Rev Gastroenterol Hepatol; 2018 Feb; 15(2):111-128. PubMed ID: 29018272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bile acid receptors in the biliary tree: TGR5 in physiology and disease.
    Deutschmann K; Reich M; Klindt C; Dröge C; Spomer L; Häussinger D; Keitel V
    Biochim Biophys Acta Mol Basis Dis; 2018 Apr; 1864(4 Pt B):1319-1325. PubMed ID: 28844960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between gut bacteria and bile in health and disease.
    Long SL; Gahan CGM; Joyce SA
    Mol Aspects Med; 2017 Aug; 56():54-65. PubMed ID: 28602676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease.
    Chávez-Talavera O; Tailleux A; Lefebvre P; Staels B
    Gastroenterology; 2017 May; 152(7):1679-1694.e3. PubMed ID: 28214524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders.
    Fiorucci S; Distrutti E
    Trends Mol Med; 2015 Nov; 21(11):702-714. PubMed ID: 26481828
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.