BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 23861905)

  • 1. Post-integration silencing of piggyBac transposable elements in Aedes aegypti.
    Palavesam A; Esnault C; O'Brochta DA
    PLoS One; 2013; 8(7):e68454. PubMed ID: 23861905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-integration stability of piggyBac in Aedes aegypti.
    Sethuraman N; Fraser MJ; Eggleston P; O'Brochta DA
    Insect Biochem Mol Biol; 2007 Sep; 37(9):941-51. PubMed ID: 17681233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and loss of large, unstable tandem arrays of the piggyBac transposable element in the yellow fever mosquito, Aedes aegypti.
    Adelman ZN; Jasinskiene N; Vally KJ; Peek C; Travanty EA; Olson KE; Brown SE; Stephens JL; Knudson DL; Coates CJ; James AA
    Transgenic Res; 2004 Oct; 13(5):411-25. PubMed ID: 15587266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transposition of the piggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni.
    Lobo N; Li X; Fraser MJ
    Mol Gen Genet; 1999 Jun; 261(4-5):803-10. PubMed ID: 10394918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IPB7 transposase behavior in Drosophila melanogaster and Aedes aegypti.
    Wright JA; Smith RC; Li X; Craig NL; Atkinson PW
    Insect Biochem Mol Biol; 2013 Oct; 43(10):899-906. PubMed ID: 23835045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti.
    Smith RC; Atkinson PW
    Genetica; 2011 Jan; 139(1):7-22. PubMed ID: 20596755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Germ line transformation of the yellow fever mosquito, Aedes aegypti, mediated by transpositional insertion of a piggyBac vector.
    Lobo NF; Hua-Van A; Li X; Nolen BM; Fraser MJ
    Insect Mol Biol; 2002 Apr; 11(2):133-9. PubMed ID: 11966878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. piggyBac-mediated transposition in Drosophila melanogaster: an evaluation of the use of constitutive promoters to control transposase gene expression.
    Li X; Heinrich JC; Scott MJ
    Insect Mol Biol; 2001 Oct; 10(5):447-55. PubMed ID: 11881809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-integration behavior of a Mos1 mariner gene vector in Aedes aegypti.
    Wilson R; Orsetti J; Klocko AD; Aluvihare C; Peckham E; Atkinson PW; Lehane MJ; O'Brochta DA
    Insect Biochem Mol Biol; 2003 Sep; 33(9):853-63. PubMed ID: 12915177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purified mariner (Mos1) transposase catalyzes the integration of marked elements into the germ-line of the yellow fever mosquito, Aedes aegypti.
    Coates CJ; Jasinskiene N; Morgan D; Tosi LR; Beverley SM; James AA
    Insect Biochem Mol Biol; 2000 Nov; 30(11):1003-8. PubMed ID: 10989286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved
    Häcker I; Rehling T; Schlosser H; Mayorga-Ch D; Heilig M; Yan Y; Armbruster PA; Schetelig MF
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm].
    Kokoza V; Ahmed A; Wimmer EA; Raikhel AS
    Insect Biochem Mol Biol; 2001 Nov; 31(12):1137-43. PubMed ID: 11583926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi.
    O'Brochta DA; Pilitt KL; Harrell RA; Aluvihare C; Alford RT
    G3 (Bethesda); 2012 Nov; 2(11):1305-15. PubMed ID: 23173082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of hermes integrations in the germline of the yellow fever mosquito, Aedes aegypti.
    Jasinskiene N; Coates CJ; James AA
    Insect Mol Biol; 2000 Feb; 9(1):11-8. PubMed ID: 10672066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PLE-wu, a new member of piggyBac transposon family from insect, is active in mammalian cells.
    Wu C; Wang S
    J Biosci Bioeng; 2014 Oct; 118(4):359-66. PubMed ID: 24751435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobility of the piggyBac transposon in embryos of the vectors of Dengue fever (Aedes albopictus) and La Crosse encephalitis (Ae. triseriatus).
    Lobo N; Li X; Hua-Van A; Fraser MJ
    Mol Genet Genomics; 2001 Mar; 265(1):66-71. PubMed ID: 11370874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeric Mos1 and piggyBac transposases result in site-directed integration.
    Maragathavally KJ; Kaminski JM; Coates CJ
    FASEB J; 2006 Sep; 20(11):1880-2. PubMed ID: 16877528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti.
    Coates CJ; Jasinskiene N; Miyashiro L; James AA
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3748-51. PubMed ID: 9520438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic characteristics of neighboring DNA modulate transposable element activity in Drosophila melanogaster.
    Esnault C; Palavesam A; Pilitt K; O'Brochta DA
    Genetics; 2011 Jan; 187(1):319-31. PubMed ID: 20944016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remobilizing deleted piggyBac vector post-integration for transgene stability in silkworm.
    Wang F; Wang R; Wang Y; Xu H; Yuan L; Ding H; Ma S; Zhou Y; Zhao P; Xia Q
    Mol Genet Genomics; 2015 Jun; 290(3):1181-9. PubMed ID: 25589404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.