These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 23862393)
41. Docetaxel secretion in tears: association with lacrimal drainage obstruction. Esmaeli B; Ahmadi MA; Rivera E; Valero V; Hutto T; Jackson DM; Newman RA Arch Ophthalmol; 2002 Sep; 120(9):1180-2. PubMed ID: 12215091 [TBL] [Abstract][Full Text] [Related]
42. Identification of human tear fluid biomarkers in vernal keratoconjunctivitis using iTRAQ quantitative proteomics. Leonardi A; Palmigiano A; Mazzola EA; Messina A; Milazzo EM; Bortolotti M; Garozzo D Allergy; 2014 Feb; 69(2):254-60. PubMed ID: 24329893 [TBL] [Abstract][Full Text] [Related]
43. Unraveling the Intraday Variations in the Tear Fluid Proteome. Jones G; Altman J; Ahmed S; Lee TJ; Zhi W; Sharma S; Sharma A Invest Ophthalmol Vis Sci; 2024 Mar; 65(3):2. PubMed ID: 38441890 [TBL] [Abstract][Full Text] [Related]
45. Using tears as a non-invasive source for early detection of breast cancer. Daily A; Ravishankar P; Harms S; Klimberg VS PLoS One; 2022; 17(4):e0267676. PubMed ID: 35471994 [TBL] [Abstract][Full Text] [Related]
46. Human urine proteome analysis by three separation approaches. Sun W; Li F; Wu S; Wang X; Zheng D; Wang J; Gao Y Proteomics; 2005 Dec; 5(18):4994-5001. PubMed ID: 16281181 [TBL] [Abstract][Full Text] [Related]
47. Characterization of the human gastric fluid proteome reveals distinct pH-dependent protein profiles: implications for biomarker studies. Kam SY; Hennessy T; Chua SC; Gan CS; Philp R; Hon KK; Lai L; Chan WH; Ong HS; Wong WK; Lim KH; Ling KL; Tan HS; Tan MM; Ho M; Kon OL J Proteome Res; 2011 Oct; 10(10):4535-46. PubMed ID: 21842849 [TBL] [Abstract][Full Text] [Related]
48. The power of tears: how tear proteomics research could revolutionize the clinic. Zhou L; Beuerman RW Expert Rev Proteomics; 2017 Mar; 14(3):189-191. PubMed ID: 28117610 [No Abstract] [Full Text] [Related]
49. Applications of diagonal chromatography for proteome-wide characterization of protein modifications and activity-based analyses. Gevaert K; Impens F; Van Damme P; Ghesquière B; Hanoulle X; Vandekerckhove J FEBS J; 2007 Dec; 274(24):6277-89. PubMed ID: 18021238 [TBL] [Abstract][Full Text] [Related]
50. Post-translation modification of proteins in tears. You J; Fitzgerald A; Cozzi PJ; Zhao Z; Graham P; Russell PJ; Walsh BJ; Willcox M; Zhong L; Wasinger V; Li Y Electrophoresis; 2010 Jun; 31(11):1853-61. PubMed ID: 20506419 [TBL] [Abstract][Full Text] [Related]
51. Association of hemopexin in tear film and conjunctival macrophages with vernal keratoconjunctivitis. Pong JC; Chu CY; Li WY; Tang LY; Li L; Lui WT; Poon TC; Rao SK; Lam DS; Wang CC; Pang CP Arch Ophthalmol; 2011 Apr; 129(4):453-61. PubMed ID: 21482871 [TBL] [Abstract][Full Text] [Related]
52. Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients. López-López M; Regueiro U; Bravo SB; Chantada-Vázquez MDP; Pena C; Díez-Feijoo E; Hervella P; Lema I Invest Ophthalmol Vis Sci; 2022 May; 63(5):12. PubMed ID: 35551575 [TBL] [Abstract][Full Text] [Related]
53. Kinetics of γ-cyclodextrin nanoparticle suspension eye drops in tear fluid. Jóhannesson G; Moya-Ortega MD; Ásgrímsdóttir GM; Lund SH; Thorsteinsdóttir M; Loftsson T; Stefánsson E Acta Ophthalmol; 2014 Sep; 92(6):550-6. PubMed ID: 24373641 [TBL] [Abstract][Full Text] [Related]
54. Analysis of Graves' ophthalmopathy patients' tear protein spectrum. Jiang LH; Wei RL Chin Med J (Engl); 2013 Dec; 126(23):4493-8. PubMed ID: 24286413 [TBL] [Abstract][Full Text] [Related]
55. Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Wong TT; Zhou L; Li J; Tong L; Zhao SZ; Li XR; Yu SJ; Koh SK; Beuerman RW Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7385-91. PubMed ID: 21697136 [TBL] [Abstract][Full Text] [Related]
56. Efficacy of acupuncture and identification of tear protein expression changes using iTRAQ quantitative proteomics in rabbits. Qiu X; Gong L; Sun X; Guo J; Chodara AM Curr Eye Res; 2011 Oct; 36(10):886-94. PubMed ID: 21950693 [TBL] [Abstract][Full Text] [Related]
57. Human Basal Tear Peptidome Characterization by CID, HCD, and ETD Followed by in Silico and in Vitro Analyses for Antimicrobial Peptide Identification. Azkargorta M; Soria J; Ojeda C; Guzmán F; Acera A; Iloro I; Suárez T; Elortza F J Proteome Res; 2015 Jun; 14(6):2649-58. PubMed ID: 25946035 [TBL] [Abstract][Full Text] [Related]
58. Analysis of the variability of human normal urine by 2D-GE reveals a "public" and a "private" proteome. Molina L; Salvetat N; Ameur RB; Peres S; Sommerer N; Jarraya F; Ayadi H; Molina F; Granier C J Proteomics; 2011 Dec; 75(1):70-80. PubMed ID: 21787893 [TBL] [Abstract][Full Text] [Related]
59. Prolonged exposure to loteprednol etabonate in human tear fluid and rabbit ocular tissues following topical ocular administration of Lotemax gel, 0.5%. Glogowski S; Lowe E; Siou-Mermet R; Ong T; Richardson M J Ocul Pharmacol Ther; 2014 Feb; 30(1):66-73. PubMed ID: 24325539 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of the frequency of ophthalmic solution application: washout effects of topical saline application on tear components. Shigeyasu C; Hirano S; Akune Y; Mochizuki H; Yamada M Curr Eye Res; 2013 Jul; 38(7):722-8. PubMed ID: 23521663 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]