These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23862463)

  • 1. Toluene decomposition by DBD-type plasma combined with metal oxide catalysts supported on ferroelectric materials.
    Jeong JG; Lee HS; Kang Y; Lee KB; Yoo JW
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4146-9. PubMed ID: 23862463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.
    Guo Y; Liao X; Fu M; Huang H; Ye D
    J Environ Sci (China); 2015 Feb; 28():187-94. PubMed ID: 25662254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst.
    Liang WJ; Ma L; Liu H; Li J
    Chemosphere; 2013 Aug; 92(10):1390-5. PubMed ID: 23773445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic oxidation of toluene, ethyl acetate and chlorobenzene over Ag/MnO
    Zhu J; Zhang W; Qi Q; Zhang H; Zhang Y; Sun D; Liang P
    Sci Rep; 2019 Aug; 9(1):12162. PubMed ID: 31434924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma-catalytic removal of toluene over the supported manganese oxides in DBD reactor: Effect of the structure of zeolites support.
    Yao X; Zhang J; Liang X; Long C
    Chemosphere; 2018 Oct; 208():922-930. PubMed ID: 30068036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures.
    Rico VJ; Hueso JL; Cotrino J; Gallardo V; Sarmiento B; Brey JJ; González-Elipe AR
    Chem Commun (Camb); 2009 Nov; (41):6192-4. PubMed ID: 19826665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison study of toluene removal by two-stage DBD-catalyst systems loading with MnO(x), CeMnO(x), and CoMnO(x).
    Huang Y; Dai S; Feng F; Zhang X; Liu Z; Yan K
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):19240-50. PubMed ID: 26253186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toluene oxidation by non-thermal plasma combined with palladium catalysts.
    Magureanu M; Dobrin D; Mandache NB; Cojocaru B; Parvulescu VI
    Front Chem; 2013; 1():7. PubMed ID: 24790936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Facile Method for in Situ Preparation of the MnO2/LaMnO3 Catalyst for the Removal of Toluene.
    Si W; Wang Y; Zhao S; Hu F; Li J
    Environ Sci Technol; 2016 Apr; 50(8):4572-8. PubMed ID: 26886715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonthermal plasma catalysis for toluene decomposition over BaTiO
    Wu K; Sun Y; Liu J; Xiong J; Wu J; Zhang J; Fu M; Chen L; Huang H; Ye D
    J Hazard Mater; 2021 Mar; 405():124156. PubMed ID: 33246817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of synergistic effects and high performance of La-Co composite oxides for toluene catalytic oxidation at low temperature.
    Wu M; Chen S; Soomro A; Ma S; Zhu M; Hua X; Xiang W
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):12123-12135. PubMed ID: 30827023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of toluene by sequential adsorption-plasma oxidation: Mixed support and catalyst deactivation.
    Qin C; Huang X; Zhao J; Huang J; Kang Z; Dang X
    J Hazard Mater; 2017 Jul; 334():29-38. PubMed ID: 28384555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abatement of toluene from gas streams via ferro-electric packed bed dielectric barrier discharge plasma.
    Liang W; Li J; Li J; Jin Y
    J Hazard Mater; 2009 Oct; 170(2-3):633-8. PubMed ID: 19515490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Al2O3-supported transition-metal oxide catalysts for catalytic incineration of toluene.
    Wang CH
    Chemosphere; 2004 Apr; 55(1):11-7. PubMed ID: 14720541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Propagated Flaming Synthesis of Highly Active Layered CuO-δ-MnO
    Li L; Luo J; Liu Y; Jing F; Su D; Chu W
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21798-21808. PubMed ID: 28589715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PCDD/F adsorption and destruction in the flue gas streams of MWI and MSP via Cu and Fe catalysts supported on carbon.
    Chang SH; Yeh JW; Chein HM; Hsu LY; Chi KH; Chang MB
    Environ Sci Technol; 2008 Aug; 42(15):5727-33. PubMed ID: 18754500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric Pressure Non-Thermal Plasma Activation of CO
    Mei D; Tu X
    Chemphyschem; 2017 Nov; 18(22):3253-3259. PubMed ID: 28834150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent catalytic removal of typical volatile organic compound mixtures over Au-Pd/α-MnO
    Xia Y; Xia L; Liu Y; Yang T; Deng J; Dai H
    J Environ Sci (China); 2018 Feb; 64():276-288. PubMed ID: 29478649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly catalytic activity of Mn/SBA-15 catalysts for toluene combustion improved by adjusting the morphology of supports.
    Qin Y; Qu Z; Dong C; Wang Y; Huang N
    J Environ Sci (China); 2019 Feb; 76():208-216. PubMed ID: 30528011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially and size selective synthesis of Fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition.
    Lu AH; Nitz JJ; Comotti M; Weidenthaler C; Schlichte K; Lehmann CW; Terasaki O; Schüth F
    J Am Chem Soc; 2010 Oct; 132(40):14152-62. PubMed ID: 20849104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.