These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 23862479)
1. Synthesis of CdSe quantum dots using various long-chain fatty acids and their phase transfer. Zhang Q; Zhang A; Yang P; Shen J J Nanosci Nanotechnol; 2013 Jun; 13(6):4235-41. PubMed ID: 23862479 [TBL] [Abstract][Full Text] [Related]
2. Preparation and Phase Transfer of Hydrophobic CdSe-Based Quantum Dots. Du Y; Yang P; Zhu Y; Zhang Q J Nanosci Nanotechnol; 2015 Mar; 15(3):2305-11. PubMed ID: 26413657 [TBL] [Abstract][Full Text] [Related]
3. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach. Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225 [TBL] [Abstract][Full Text] [Related]
4. Role of surface defects in colloidal cadmium selenide (CdSe) nanocrystals in the specificity of fluorescence quenching by metal cations. Mrad R; Poggi M; Ben Chaâbane R; Negrerie M J Colloid Interface Sci; 2020 Jul; 571():368-377. PubMed ID: 32213355 [TBL] [Abstract][Full Text] [Related]
5. Assembling CdSe Quantum Dots into Polymeric Micelles Formed by a Polyethylenimine-Based Amphiphilic Polymer to Enhance Efficiency and Selectivity of CO Wu J; Deng BY; Liu J; Yang SR; Li MD; Li J; Wang F ACS Appl Mater Interfaces; 2022 Jul; 14(26):29945-29955. PubMed ID: 35749254 [TBL] [Abstract][Full Text] [Related]
6. Dithiocarbamates as capping ligands for water-soluble quantum dots. Zhang Y; Schnoes AM; Clapp AR ACS Appl Mater Interfaces; 2010 Nov; 2(11):3384-95. PubMed ID: 21053924 [TBL] [Abstract][Full Text] [Related]
7. Monodisperse CdSe Quantum Dots Encased in Six (100) Facets via Ligand-Controlled Nucleation and Growth. Lv L; Li J; Wang Y; Shu Y; Peng X J Am Chem Soc; 2020 Nov; 142(47):19926-19935. PubMed ID: 33185104 [TBL] [Abstract][Full Text] [Related]
8. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS. Ratnesh RK; Mehata MS Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():201-210. PubMed ID: 28242450 [TBL] [Abstract][Full Text] [Related]
9. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells. Rodriguez-Torres MR; Velez C; Zayas B; Rivera O; Arslan Z; Gonzalez-Vega MN; Diaz-Diestra D; Beltran-Huarac J; Morell G; Primera-Pedrozo OM J Nanopart Res; 2015 Jun; 17(6):. PubMed ID: 26949369 [TBL] [Abstract][Full Text] [Related]
10. Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals? Moghaddam MM; Baghbanzadeh M; Keilbach A; Kappe CO Nanoscale; 2012 Dec; 4(23):7435-42. PubMed ID: 23085887 [TBL] [Abstract][Full Text] [Related]
11. Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms. Aldeek F; Mustin C; Balan L; Roques-Carmes T; Fontaine-Aupart MP; Schneider R Biomaterials; 2011 Aug; 32(23):5459-70. PubMed ID: 21549423 [TBL] [Abstract][Full Text] [Related]
12. Continuous-flow synthesis of CdSe quantum dots: a size-tunable and scalable approach. Mirhosseini Moghaddam M; Baghbanzadeh M; Sadeghpour A; Glatter O; Kappe CO Chemistry; 2013 Aug; 19(35):11629-36. PubMed ID: 23857757 [TBL] [Abstract][Full Text] [Related]
13. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Zhang W; Chen G; Wang J; Ye BC; Zhong X Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326 [TBL] [Abstract][Full Text] [Related]
14. Thiolate-Capped CdSe/ZnS Core-Shell Quantum Dots for the Sensitive Detection of Glucose. Abd Rahman S; Ariffin N; Yusof NA; Abdullah J; Mohammad F; Ahmad Zubir Z; Nik Abd Aziz NMA Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671559 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure control of CdSe nanocrystals in growth and nucleation: dominating effects of surface versus interior structure. Gao Y; Peng X J Am Chem Soc; 2014 May; 136(18):6724-32. PubMed ID: 24712700 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, optical properties and tuning size of CdSe quantum dots by variation capping agent. Samadi-Maybodi A; Tirbandpay R Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 250():119369. PubMed ID: 33406453 [TBL] [Abstract][Full Text] [Related]
17. Encapsulation of cadmium selenide quantum dots using a self-assembling nanoemulsion (SANE) reduces their in vitro toxicity. Edmund AR; Kambalapally S; Wilson TA; Nicolosi RJ Toxicol In Vitro; 2011 Feb; 25(1):185-90. PubMed ID: 21044677 [TBL] [Abstract][Full Text] [Related]
18. Organic-to-Aqueous Phase Transfer of Cadmium Chalcogenide Quantum Dots using a Sulfur-Free Ligand for Enhanced Photoluminescence and Oxidative Stability. Calzada R; Thompson CM; Westmoreland DE; Edme K; Weiss EA Chem Mater; 2016 Sep; 28(18):6716-6723. PubMed ID: 28260836 [TBL] [Abstract][Full Text] [Related]
19. The application of CdSe quantum dots with multicolor emission as fluorescent probes for cell labeling. Zhao MX; Li Y; Zeng EZ; Wang CJ Chem Asian J; 2014 May; 9(5):1349-55. PubMed ID: 24616373 [TBL] [Abstract][Full Text] [Related]
20. Synthesis, biocompatibility and cell labeling of L-arginine-functional beta-cyclodextrin-modified quantum dot probes. Zhao MX; Xia Q; Feng XD; Zhu XH; Mao ZW; Ji LN; Wang K Biomaterials; 2010 May; 31(15):4401-8. PubMed ID: 20189641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]