These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23862628)

  • 1. Stomata actively regulate internal aeration of the sacred lotus Nelumbo nucifera.
    Matthews PG; Seymour RS
    Plant Cell Environ; 2014 Feb; 37(2):402-13. PubMed ID: 23862628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cuticle Affects Calculations of Internal CO2 in Leaves Closing Their Stomata.
    Tominaga J; Kawamitsu Y
    Plant Cell Physiol; 2015 Oct; 56(10):1900-8. PubMed ID: 26206845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Omics Analyses Identify Key Pathways Involved in Petiole Rigidity Formation in Sacred Lotus.
    Li M; Hameed I; Cao D; He D; Yang P
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L.
    Wang Y; Noguchi K; Terashima I
    Plant Cell Environ; 2008 Sep; 31(9):1307-16. PubMed ID: 18537998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NnABI4-Mediated ABA Regulation of Starch Biosynthesis in Lotus (
    Wu P; Liu A; Zhang Y; Feng K; Zhao S; Li L
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant activity of bovine and porcine meat treated with extracts from edible lotus (Nelumbo nucifera) rhizome knot and leaf.
    Huang B; He J; Ban X; Zeng H; Yao X; Wang Y
    Meat Sci; 2011 Jan; 87(1):46-53. PubMed ID: 20869815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of improved aeration due to gas films on leaves of submerged rice.
    Verboven P; Pedersen O; Ho QT; Nicolai BM; Colmer TD
    Plant Cell Environ; 2014 Oct; 37(10):2433-52. PubMed ID: 24548021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized hydromechanical model for stomatal responses to hydraulic perturbations.
    Kwon HW; Choi MY
    J Theor Biol; 2014 Jan; 340():119-30. PubMed ID: 24060618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrelationships of petiolar air canal architecture, water depth, and convective air flow in Nymphaea odorata (Nymphaeaceae).
    Richards JH; Kuhn DN; Bishop K
    Am J Bot; 2012 Dec; 99(12):1903-9. PubMed ID: 23204486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco.
    Evans JR; von Caemmerer S
    Plant Cell Environ; 2013 Apr; 36(4):745-56. PubMed ID: 22882584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Midday depression of leaf CO2 exchange within the crown of Dipterocarpus sublamellatus in a lowland dipterocarp forest in Peninsular Malaysia.
    Kosugi Y; Takanashi S; Matsuo N; Nik AR
    Tree Physiol; 2009 Apr; 29(4):505-15. PubMed ID: 19203974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple strategy to monitor the temporal and spatial distribution of alkaloids in sacred lotus leaves.
    Liu J; Shi K; Shi J; Feng Y; Hao C; Peng J; Chen S
    Biosci Biotechnol Biochem; 2021 May; 85(6):1332-1340. PubMed ID: 33713113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation.
    Lautner S; Stummer M; Matyssek R; Fromm J; Grams TE
    Plant Cell Environ; 2014 Jan; 37(1):254-60. PubMed ID: 23763645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic basis for stepwise C-glycosylation in the formation of flavonoid di-C-glycosides in sacred lotus (Nelumbo nucifera Gaertn.).
    Feng CY; Li SS; Taguchi G; Wu Q; Yin DD; Gu ZY; Wu J; Xu WZ; Liu C; Wang LS
    Plant J; 2021 Apr; 106(2):351-365. PubMed ID: 33486798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionarily conserved function of the sacred lotus (Nelumbo nucifera Gaertn.) CER2-LIKE family in very-long-chain fatty acid elongation.
    Yang X; Wang Z; Feng T; Li J; Huang L; Yang B; Zhao H; Jenks MA; Yang P; Lü S
    Planta; 2018 Sep; 248(3):715-727. PubMed ID: 29948126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sacred lotus (Nelumbo nucifera) - phytochemical and therapeutic profile.
    Mukherjee PK; Mukherjee D; Maji AK; Rai S; Heinrich M
    J Pharm Pharmacol; 2009 Apr; 61(4):407-22. PubMed ID: 19298686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does lateral gas diffusion in leaves matter?
    Morison JI; Lawson T
    Plant Cell Environ; 2007 Sep; 30(9):1072-85. PubMed ID: 17661748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patchy stomatal behavior during midday depression of leaf CO₂ exchange in tropical trees.
    Kamakura M; Kosugi Y; Takanashi S; Matsumoto K; Okumura M; Philip E
    Tree Physiol; 2011 Feb; 31(2):160-8. PubMed ID: 21383025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and characterization of GRAS transcription factors in sacred lotus (Nelumbo nucifera).
    Wang Y; Shi S; Zhou Y; Zhou Y; Yang J; Tang X
    PeerJ; 2016; 4():e2388. PubMed ID: 27635351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.