BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 23862629)

  • 1. Hierarchical mesoporous silica nanofibers as multifunctional scaffolds for bone tissue regeneration.
    Ravichandran R; Gandhi S; Sundaramurthi D; Sethuraman S; Krishnan UM
    J Biomater Sci Polym Ed; 2013; 24(17):1988-2005. PubMed ID: 23862629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration.
    Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of novel aligned nanofibrous composite membranes for guided bone regeneration.
    Kharaziha M; Fathi MH; Edris H
    J Mech Behav Biomed Mater; 2013 Aug; 24():9-20. PubMed ID: 23706988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.
    Luo Z; Deng Y; Zhang R; Wang M; Bai Y; Zhao Q; Lyu Y; Wei J; Wei S
    Colloids Surf B Biointerfaces; 2015 Jul; 131():73-82. PubMed ID: 25969416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering.
    Ganesh N; Jayakumar R; Koyakutty M; Mony U; Nair SV
    Tissue Eng Part A; 2012 Sep; 18(17-18):1867-81. PubMed ID: 22725098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration.
    Lian M; Sun B; Qiao Z; Zhao K; Zhou X; Zhang Q; Zou D; He C; Zhang X
    Colloids Surf B Biointerfaces; 2019 Apr; 176():219-229. PubMed ID: 30623809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration.
    Zhang J; Zhao S; Zhu Y; Huang Y; Zhu M; Tao C; Zhang C
    Acta Biomater; 2014 May; 10(5):2269-81. PubMed ID: 24412143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators.
    Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV
    Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasma treatment of poly(caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity.
    Sankar D; Shalumon KT; Chennazhi KP; Menon D; Jayakumar R
    Tissue Eng Part A; 2014 Jun; 20(11-12):1689-702. PubMed ID: 24377950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering.
    Tian L; Prabhakaran MP; Ding X; Ramakrishna S
    J Biomater Sci Polym Ed; 2013; 24(17):1952-68. PubMed ID: 23819766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering.
    Wu C; Zhou Y; Lin C; Chang J; Xiao Y
    Acta Biomater; 2012 Oct; 8(10):3805-15. PubMed ID: 22750735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Bhattacharya D; Maiti TK; Kundu SC
    Cell Tissue Res; 2016 Feb; 363(2):525-40. PubMed ID: 26174955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.
    Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E
    Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells.
    Wu C; Zhou Y; Chang J; Xiao Y
    Acta Biomater; 2013 Nov; 9(11):9159-68. PubMed ID: 23811216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis.
    Gandhimathi C; Venugopal J; Ravichandran R; Sundarrajan S; Suganya S; Ramakrishna S
    Macromol Biosci; 2013 Jun; 13(6):696-706. PubMed ID: 23529905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure.
    Wu C; Fan W; Zhu Y; Gelinsky M; Chang J; Cuniberti G; Albrecht V; Friis T; Xiao Y
    Acta Biomater; 2011 Oct; 7(10):3563-72. PubMed ID: 21745610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.