These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 23862629)
1. Hierarchical mesoporous silica nanofibers as multifunctional scaffolds for bone tissue regeneration. Ravichandran R; Gandhi S; Sundaramurthi D; Sethuraman S; Krishnan UM J Biomater Sci Polym Ed; 2013; 24(17):1988-2005. PubMed ID: 23862629 [TBL] [Abstract][Full Text] [Related]
2. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431 [TBL] [Abstract][Full Text] [Related]
3. Development of novel aligned nanofibrous composite membranes for guided bone regeneration. Kharaziha M; Fathi MH; Edris H J Mech Behav Biomed Mater; 2013 Aug; 24():9-20. PubMed ID: 23706988 [TBL] [Abstract][Full Text] [Related]
4. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering. Luo Z; Deng Y; Zhang R; Wang M; Bai Y; Zhao Q; Lyu Y; Wei J; Wei S Colloids Surf B Biointerfaces; 2015 Jul; 131():73-82. PubMed ID: 25969416 [TBL] [Abstract][Full Text] [Related]
5. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering. Ganesh N; Jayakumar R; Koyakutty M; Mony U; Nair SV Tissue Eng Part A; 2012 Sep; 18(17-18):1867-81. PubMed ID: 22725098 [TBL] [Abstract][Full Text] [Related]
6. Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration. Lian M; Sun B; Qiao Z; Zhao K; Zhou X; Zhang Q; Zou D; He C; Zhang X Colloids Surf B Biointerfaces; 2019 Apr; 176():219-229. PubMed ID: 30623809 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Zhang J; Zhao S; Zhu Y; Huang Y; Zhu M; Tao C; Zhang C Acta Biomater; 2014 May; 10(5):2269-81. PubMed ID: 24412143 [TBL] [Abstract][Full Text] [Related]
8. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455 [TBL] [Abstract][Full Text] [Related]
9. Surface plasma treatment of poly(caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity. Sankar D; Shalumon KT; Chennazhi KP; Menon D; Jayakumar R Tissue Eng Part A; 2014 Jun; 20(11-12):1689-702. PubMed ID: 24377950 [TBL] [Abstract][Full Text] [Related]
10. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
11. Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering. Tian L; Prabhakaran MP; Ding X; Ramakrishna S J Biomater Sci Polym Ed; 2013; 24(17):1952-68. PubMed ID: 23819766 [TBL] [Abstract][Full Text] [Related]
12. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Wu C; Zhou Y; Lin C; Chang J; Xiao Y Acta Biomater; 2012 Oct; 8(10):3805-15. PubMed ID: 22750735 [TBL] [Abstract][Full Text] [Related]
14. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651 [TBL] [Abstract][Full Text] [Related]
15. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects. Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612 [TBL] [Abstract][Full Text] [Related]
16. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Wu C; Zhou Y; Chang J; Xiao Y Acta Biomater; 2013 Nov; 9(11):9159-68. PubMed ID: 23811216 [TBL] [Abstract][Full Text] [Related]
17. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750 [TBL] [Abstract][Full Text] [Related]
18. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
19. Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis. Gandhimathi C; Venugopal J; Ravichandran R; Sundarrajan S; Suganya S; Ramakrishna S Macromol Biosci; 2013 Jun; 13(6):696-706. PubMed ID: 23529905 [TBL] [Abstract][Full Text] [Related]
20. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Wu C; Fan W; Zhu Y; Gelinsky M; Chang J; Cuniberti G; Albrecht V; Friis T; Xiao Y Acta Biomater; 2011 Oct; 7(10):3563-72. PubMed ID: 21745610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]