BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 23862629)

  • 21. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.
    Shadjou N; Hasanzadeh M
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():401-9. PubMed ID: 26117771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration.
    Francis L; Venugopal J; Prabhakaran MP; Thavasi V; Marsano E; Ramakrishna S
    Acta Biomater; 2010 Oct; 6(10):4100-9. PubMed ID: 20466085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA
    Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silica-based mesoporous nanobiomaterials as promoter of bone regeneration process.
    Shadjou N; Hasanzadeh M
    J Biomed Mater Res A; 2015 Nov; 103(11):3703-16. PubMed ID: 26011776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel collagen scaffold supports human osteogenesis--applications for bone tissue engineering.
    Keogh MB; O' Brien FJ; Daly JS
    Cell Tissue Res; 2010 Apr; 340(1):169-77. PubMed ID: 20198386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds.
    Wu C; Miron R; Sculean A; Kaskel S; Doert T; Schulze R; Zhang Y
    Biomaterials; 2011 Oct; 32(29):7068-78. PubMed ID: 21704367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection.
    Selvakumar M; Pawar HS; Francis NK; Das B; Dhara S; Chattopadhyay S
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5941-60. PubMed ID: 26889707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrospun nanofibrous 3D scaffold for bone tissue engineering.
    Eap S; Ferrand A; Palomares CM; Hébraud A; Stoltz JF; Mainard D; Schlatter G; Benkirane-Jessel N
    Biomed Mater Eng; 2012; 22(1-3):137-41. PubMed ID: 22766712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of novel silk fibroin/polyvinyl alcohol/sol-gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation.
    Singh BN; Pramanik K
    Biofabrication; 2017 Mar; 9(1):015028. PubMed ID: 28332482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polycaprolactone scaffolds fabricated with an advanced electrohydrodynamic direct-printing method for bone tissue regeneration.
    Ahn SH; Lee HJ; Kim GH
    Biomacromolecules; 2011 Dec; 12(12):4256-63. PubMed ID: 22070169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration.
    Maleki H; Shahbazi MA; Montes S; Hosseini SH; Eskandari MR; Zaunschirm S; Verwanger T; Mathur S; Milow B; Krammer B; Hüsing N
    ACS Appl Mater Interfaces; 2019 May; 11(19):17256-17269. PubMed ID: 31013056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabricating microparticles/nanofibers composite and nanofiber scaffold with controllable pore size by rotating multichannel electrospinning.
    Huang YY; Wang DY; Chang LL; Yang YC
    J Biomater Sci Polym Ed; 2010; 21(11):1503-14. PubMed ID: 20534198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration.
    Toskas G; Cherif C; Hund RD; Laourine E; Mahltig B; Fahmi A; Heinemann C; Hanke T
    Carbohydr Polym; 2013 May; 94(2):713-22. PubMed ID: 23544625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrospun nanofibers of a phosphorylated polymer--a bioinspired approach for bone graft applications.
    Datta P; Chatterjee J; Dhara S
    Colloids Surf B Biointerfaces; 2012 Jun; 94():177-83. PubMed ID: 22377216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity.
    Tamburaci S; Tihminlioglu F
    Int J Biol Macromol; 2020 Jan; 142():643-657. PubMed ID: 31622724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymeric nanofibrous scaffolds laden with cell-derived extracellular matrix for bone regeneration.
    Junka R; Yu X
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110981. PubMed ID: 32487395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers.
    Alvarez Perez MA; Guarino V; Cirillo V; Ambrosio L
    J Biomed Mater Res A; 2012 Nov; 100(11):3008-19. PubMed ID: 22700476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering.
    Lo KW; Ulery BD; Kan HM; Ashe KM; Laurencin CT
    J Tissue Eng Regen Med; 2014 Sep; 8(9):728-36. PubMed ID: 22815259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.