These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 23862632)

  • 1. Recent Advances in Metallic Nanoparticle Assemblies for Surface-Enhanced Spectroscopy.
    Tim B; Błaszkiewicz P; Kotkowiak M
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid Interfacial Gating of Superhydrophobic Plasmonic Metal-Organic Frameworks for Three-in-One Separation, Enrichment, and Recognition in Bacterial Quorum Sensing.
    Qu C; Li Y; Li G; Wang X; Su M; Liu H
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):32824-32835. PubMed ID: 38864267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices.
    Chen CL; Zhang P; Rosi NL
    J Am Chem Soc; 2008 Oct; 130(41):13555-7. PubMed ID: 18800838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytically Active Peptide-Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes.
    Mikolajczak DJ; Berger AA; Koksch B
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):8776-8785. PubMed ID: 31905254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimuli-triggered Self-Assembly of Gold Nanoparticles: Recent Advances in Fabrication and Biomedical Applications.
    Zhao Y; Cui C; Fan G; Shi H
    Chem Asian J; 2024 Apr; 19(7):e202400015. PubMed ID: 38403853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulations of a Catalytic Multivalent Peptide-Nanoparticle Complex.
    Dutta S; Corni S; Brancolini G
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer Cell Targeting, Magnetic Sorting, and SERS Detection through Cell Surface Receptors.
    Rist D; DePalma T; Stagner E; Tallman MM; Venere M; Skardal A; Schultz ZD
    ACS Sens; 2023 Dec; 8(12):4636-4645. PubMed ID: 37988612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-induced Oriented Crystallization of Intracellular Nanocrystals Based on Phase Separation for Diagnostic Bioimaging and Analysis.
    Liu H; Liu Z; Xiao J; Liu X; Jiang H; Wang X
    Adv Healthc Mater; 2024 Jun; 13(14):e2303248. PubMed ID: 38272459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential-Modulated Surface-Enhanced Raman Spectroscopy of Tolmetin at Gold Nanoparticle Film Functionalized Polarizable Liquid-Liquid Interfaces.
    Tarabet M; Muñoz NR; Scanlon MD; Herzog G; Dossot M
    J Phys Chem C Nanomater Interfaces; 2024 May; 128(19):7936-7947. PubMed ID: 38774155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike Growth on Patterned Gold Nanoparticle Scaffolds.
    Jia J; Metzkow N; Park SM; Wu YL; Sample AD; Diloknawarit B; Jung I; Odom TW
    Nano Lett; 2023 Dec; 23(23):11260-11265. PubMed ID: 38048438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface chemistry of gold nanoparticles for health-related applications.
    Zhang J; Mou L; Jiang X
    Chem Sci; 2020 Jan; 11(4):923-936. PubMed ID: 34084347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Actuation of Nanoparticle-Loaded Liquid-Liquid Interfaces for Active Photonics.
    Kim Y; Yao K; Ponce C; Zheng Y
    ACS Nano; 2024 Jun; 18(24):15627-15637. PubMed ID: 38850254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Naringin-Chalcone Bioflavonoid-Protected Nanocolloids: Mode of Flavonoid Adsorption, a Determinant for Protein Extraction.
    Mandial D; Khullar P; Kumar H; Ahluwalia GK; Bakshi MS
    ACS Omega; 2018 Nov; 3(11):15606-15614. PubMed ID: 31458217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold Nanoparticles for In Vitro Diagnostics.
    Zhou W; Gao X; Liu D; Chen X
    Chem Rev; 2015 Oct; 115(19):10575-636. PubMed ID: 26114396
    [No Abstract]   [Full Text] [Related]  

  • 15. Tuning gold nanoparticles interfaces by specific peptide interaction for surface enhanced Raman spectroscopy (SERS) and separation applications.
    Manikas AC; Causa F; Della Moglie R; Netti PA
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7915-22. PubMed ID: 23862632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes.
    Zhang K; Ji J; Li Y; Liu B
    Anal Chem; 2014 Jul; 86(13):6660-5. PubMed ID: 24915488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoparticles paper as a SERS bio-diagnostic platform.
    Ngo YH; Then WL; Shen W; Garnier G
    J Colloid Interface Sci; 2013 Nov; 409():59-65. PubMed ID: 23978290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles.
    Tong L; Zhu T; Liu Z
    Chem Soc Rev; 2011 Mar; 40(3):1296-304. PubMed ID: 21125088
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.