These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 23862800)
1. Evaluation of moving-coil loudspeaker and passive radiator parameters using normal-incidence sound transmission measurements: theoretical developments. Leishman TW; Anderson BE J Acoust Soc Am; 2013 Jul; 134(1):223-36. PubMed ID: 23862800 [TBL] [Abstract][Full Text] [Related]
2. Electroacoustic analysis, design, and implementation of a small balanced armature speaker. Bai MR; You BC; Lo YY J Acoust Soc Am; 2014 Nov; 136(5):2554-60. PubMed ID: 25373957 [TBL] [Abstract][Full Text] [Related]
3. Electroacoustic analysis of an electret loudspeaker using combined finite-element and lumped-parameter models. Bai MR; Chen RL; Wang CJ J Acoust Soc Am; 2009 Jun; 125(6):3632-40. PubMed ID: 19507945 [TBL] [Abstract][Full Text] [Related]
4. Transmission loss measurement of acoustic material using time-domain pulse-separation method (L). Sun L; Hou H J Acoust Soc Am; 2011 Apr; 129(4):1681-4. PubMed ID: 21476625 [TBL] [Abstract][Full Text] [Related]
5. Normal incidence sound transmission loss evaluation by upstream surface impedance measurements. Panneton R J Acoust Soc Am; 2009 Mar; 125(3):1490-7. PubMed ID: 19275307 [TBL] [Abstract][Full Text] [Related]
6. On the physical origin of the electro-mechano-acoustical analogy. Bertuccio G J Acoust Soc Am; 2022 Mar; 151(3):2066. PubMed ID: 35364934 [TBL] [Abstract][Full Text] [Related]
8. A general wave decomposition formula for the measurement of normal incidence sound transmission loss in impedance tube. Salissou Y; Panneton R J Acoust Soc Am; 2009 Apr; 125(4):2083-90. PubMed ID: 19354384 [TBL] [Abstract][Full Text] [Related]
9. Theoretical and experimental analysis of the electromechanical behavior of a compact spherical loudspeaker array for directivity control. Pasqual AM; Herzog P; Arruda JR J Acoust Soc Am; 2010 Dec; 128(6):3478-88. PubMed ID: 21218880 [TBL] [Abstract][Full Text] [Related]
10. Expert diagnostic system for moving-coil loudspeakers using nonlinear modeling. Bai MR; Huang CM J Acoust Soc Am; 2009 Feb; 125(2):819-30. PubMed ID: 19206859 [TBL] [Abstract][Full Text] [Related]
11. Wave field synthesis of moving virtual sound sources with complex radiation properties. Ahrens J; Spors S J Acoust Soc Am; 2011 Nov; 130(5):2807-16. PubMed ID: 22087909 [TBL] [Abstract][Full Text] [Related]
13. Energy- and wave-based beam-tracing prediction of room-acoustical parameters using different boundary conditions. Yousefzadeh B; Hodgson M J Acoust Soc Am; 2012 Sep; 132(3):1450-61. PubMed ID: 22978874 [TBL] [Abstract][Full Text] [Related]
14. On the sound field of a shallow spherical shell in an infinite baffle. Mellow T; Kärkkäinen L J Acoust Soc Am; 2007 Jun; 121(6):3527-41. PubMed ID: 17552705 [TBL] [Abstract][Full Text] [Related]
15. On the use of a loudspeaker for measuring the viscoelastic properties of sound absorbing materials. Doutres O; Dauchez N; Génevaux JM; Lemarquand G J Acoust Soc Am; 2008 Dec; 124(6):EL335-40. PubMed ID: 19206690 [TBL] [Abstract][Full Text] [Related]
17. Complement to standard method for measuring normal incidence sound transmission loss with three microphones. Salissou Y; Panneton R; Doutres O J Acoust Soc Am; 2012 Mar; 131(3):EL216-22. PubMed ID: 22423811 [TBL] [Abstract][Full Text] [Related]
18. On-axis and far-field sound radiation from resilient flat and dome-shaped radiators. Aarts RM; Janssen AJ J Acoust Soc Am; 2009 Mar; 125(3):1444-55. PubMed ID: 19275302 [TBL] [Abstract][Full Text] [Related]