These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 23862806)
1. Numerical methodologies for optimizing and predicting the low frequency behavior of anechoic chambers. Bonfiglio P; Pompoli F J Acoust Soc Am; 2013 Jul; 134(1):285-91. PubMed ID: 23862806 [TBL] [Abstract][Full Text] [Related]
2. Experimental and numerical investigations on melamine wedges. Schneider S J Acoust Soc Am; 2008 Sep; 124(3):1568-76. PubMed ID: 19045648 [TBL] [Abstract][Full Text] [Related]
3. Sound absorption of a rib-stiffened plate covered by anechoic coatings. Fu X; Jin Z; Yin Y; Liu B J Acoust Soc Am; 2015 Mar; 137(3):1551-6. PubMed ID: 25786965 [TBL] [Abstract][Full Text] [Related]
4. The scattering of sound by a long cylinder above an impedance boundary. Lui WK; Li KM J Acoust Soc Am; 2010 Feb; 127(2):664-74. PubMed ID: 20136188 [TBL] [Abstract][Full Text] [Related]
5. Comparison of three measurement techniques for the normal absorption coefficient of sound absorbing materials in the free field. Hirosawa K; Takashima K; Nakagawa H; Kon M; Yamamoto A; Lauriks W J Acoust Soc Am; 2009 Dec; 126(6):3020-7. PubMed ID: 20000915 [TBL] [Abstract][Full Text] [Related]
6. Normal incidence sound transmission loss evaluation by upstream surface impedance measurements. Panneton R J Acoust Soc Am; 2009 Mar; 125(3):1490-7. PubMed ID: 19275307 [TBL] [Abstract][Full Text] [Related]
7. Single frequency sound propagation in flat waveguides with locally reactive impedance boundaries. Min H; Chen W; Qiu X J Acoust Soc Am; 2011 Aug; 130(2):772-82. PubMed ID: 21877793 [TBL] [Abstract][Full Text] [Related]
8. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain. Bin J; Yousuff Hussaini M; Lee S J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844 [TBL] [Abstract][Full Text] [Related]
9. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device. Petosić A; Svilar D; Ivancević B Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave. Sum KS; Pan J J Acoust Soc Am; 2007 Jul; 122(1):333-44. PubMed ID: 17614493 [TBL] [Abstract][Full Text] [Related]
12. Development of volume conductor and source models to localize epileptic foci. Fuchs M; Wagner M; Kastner J J Clin Neurophysiol; 2007 Apr; 24(2):101-19. PubMed ID: 17414966 [TBL] [Abstract][Full Text] [Related]
13. Computation of sound radiation by a driver in a cabinet using a substitute source approach. Lindberg A; Pavić G J Acoust Soc Am; 2015 Aug; 138(2):1132-42. PubMed ID: 26328727 [TBL] [Abstract][Full Text] [Related]
14. Acoustic behavior of porous ceiling absorbers based on local and extended reaction. Gunnarsdóttir K; Jeong CH; Marbjerg G J Acoust Soc Am; 2015 Jan; 137(1):509-12. PubMed ID: 25618082 [TBL] [Abstract][Full Text] [Related]
15. Absorption of oblique incidence sound by a finite micro-perforated panel absorber. Yang C; Cheng L; Pan J J Acoust Soc Am; 2013 Jan; 133(1):201-9. PubMed ID: 23297895 [TBL] [Abstract][Full Text] [Related]
16. Acoustic insertion loss due to two dimensional periodic arrays of circular cylinders parallel to a nearby surface. Krynkin A; Umnova O; Sánchez-Pérez JV; Chong AY; Taherzadeh S; Attenborough K J Acoust Soc Am; 2011 Dec; 130(6):3736-45. PubMed ID: 22225030 [TBL] [Abstract][Full Text] [Related]
17. An equivalent source technique for recovering the free sound field in a noisy environment. Bi CX; Bolton JS J Acoust Soc Am; 2012 Feb; 131(2):1260-70. PubMed ID: 22352500 [TBL] [Abstract][Full Text] [Related]
18. Rayleigh scattering of a spherical sound wave. Godin OA J Acoust Soc Am; 2013 Feb; 133(2):709-20. PubMed ID: 23363090 [TBL] [Abstract][Full Text] [Related]
19. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction. Langley RS; Cotoni V J Acoust Soc Am; 2010 Apr; 127(4):2118-28. PubMed ID: 20369993 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of a separation method for source identification in small spaces. Braikia Y; Melon M; Langrenne C; Bavu É; Garcia A J Acoust Soc Am; 2013 Jul; 134(1):323-31. PubMed ID: 23862810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]