BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23862923)

  • 1. The application of the thermodynamic perturbation theory to study the hydrophobic hydration.
    Mohoric T; Urbic T; Hribar-Lee B
    J Chem Phys; 2013 Jul; 139(2):024101. PubMed ID: 23862923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple model of hydrophobic hydration.
    Lukšič M; Urbic T; Hribar-Lee B; Dill KA
    J Phys Chem B; 2012 May; 116(21):6177-86. PubMed ID: 22564051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of the integral equation theory to study the hydrophobic interaction.
    Mohorič T; Urbic T; Hribar-Lee B
    J Chem Phys; 2014 Jan; 140(2):024502. PubMed ID: 24437891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory for the three-dimensional Mercedes-Benz model of water.
    Bizjak A; Urbic T; Vlachy V; Dill KA
    J Chem Phys; 2009 Nov; 131(19):194504. PubMed ID: 19929057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobicity within the three-dimensional Mercedes-Benz model: potential of mean force.
    Dias CL; Hynninen T; Ala-Nissila T; Foster AS; Karttunen M
    J Chem Phys; 2011 Feb; 134(6):065106. PubMed ID: 21322739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved thermodynamic perturbation theory for Mercedes-Benz water.
    Urbic T; Vlachy V; Kalyuzhnyi YV; Dill KA
    J Chem Phys; 2007 Nov; 127(17):174511. PubMed ID: 17994831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydrophobic effect in a simple isotropic water-like model: Monte Carlo study.
    Huš M; Urbic T
    J Chem Phys; 2014 Apr; 140(14):144904. PubMed ID: 24735315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercedes-Benz water molecules near hydrophobic wall: integral equation theories vs Monte Carlo simulations.
    Urbic T; Holovko MF
    J Chem Phys; 2011 Oct; 135(13):134706. PubMed ID: 21992334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-range combined water model.
    Grigoriev FV; Sulimov VB
    J Mol Graph Model; 2019 May; 88():160-167. PubMed ID: 30708282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropy and enthalpy convergence of hydrophobic solvation beyond the hard-sphere limit.
    Sedlmeier F; Horinek D; Netz RR
    J Chem Phys; 2011 Feb; 134(5):055105. PubMed ID: 21303165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration.
    Irudayam SJ; Henchman RH
    J Phys Condens Matter; 2010 Jul; 22(28):284108. PubMed ID: 21399280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics and the hydrophobic effect in a core-softened model and comparison with experiments.
    Huš M; Urbic T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022115. PubMed ID: 25215697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Case study of enthalpy-entropy noncompensation.
    Graziano G
    J Chem Phys; 2004 Mar; 120(9):4467-71. PubMed ID: 15268614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft collective fluctuations governing hydrophobic association.
    Godec A; Smith JC; Merzel F
    Phys Rev Lett; 2013 Sep; 111(12):127801. PubMed ID: 24093302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration Properties and Solvent Effects for All-Atom Solutes in Polarizable Coarse-Grained Water.
    Yan XC; Tirado-Rives J; Jorgensen WL
    J Phys Chem B; 2016 Aug; 120(33):8102-14. PubMed ID: 26901452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the hydrophobic effect. 1. A computer simulation-molecular-thermodynamic model for the self-assembly of hydrophobic and amphiphilic solutes in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1025-44. PubMed ID: 17266257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the molecular origins of volumetric data.
    Chalikian TV
    J Phys Chem B; 2008 Jan; 112(3):911-7. PubMed ID: 18171052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration free energy of a Model Lennard-Jones solute particle: microscopic Monte Carlo simulation studies, and interpretation based on mesoscopic models.
    Gruziel M; Rudnicki WR; Lesyng B
    J Chem Phys; 2008 Feb; 128(6):064503. PubMed ID: 18282052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How hydrophobic hydration responds to solute size and attractions: Theory and simulations.
    Athawale MV; Jamadagni SN; Garde S
    J Chem Phys; 2009 Sep; 131(11):115102. PubMed ID: 19778151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extensive all-atom Monte Carlo sampling and QM/MM corrections in the SAMPL4 hydration free energy challenge.
    Genheden S; Cabedo Martinez AI; Criddle MP; Essex JW
    J Comput Aided Mol Des; 2014 Mar; 28(3):187-200. PubMed ID: 24488307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.