These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 23862944)

  • 1. Full-dimensional quantum calculations of the dissociation energy, zero-point, and 10 K properties of H7+/D7+ clusters using an ab initio potential energy surface.
    Barragán P; Pérez de Tudela R; Qu C; Prosmiti R; Bowman JM
    J Chem Phys; 2013 Jul; 139(2):024308. PubMed ID: 23862944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Communication: A new ab initio potential energy surface for HCl-H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction.
    Mancini JS; Bowman JM
    J Chem Phys; 2013 Mar; 138(12):121102. PubMed ID: 23556702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio global potential-energy surface for H5(+) --> H3(+) + H2.
    Xie Z; Braams BJ; Bowman JM
    J Chem Phys; 2005 Jun; 122(22):224307. PubMed ID: 15974668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.
    Wang Y; Braams BJ; Bowman JM; Carter S; Tew DP
    J Chem Phys; 2008 Jun; 128(22):224314. PubMed ID: 18554020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-dimensional vibrational calculations for H5O2+ using an ab initio potential energy surface.
    McCoy AB; Huang X; Carter S; Landeweer MY; Bowman JM
    J Chem Phys; 2005 Feb; 122(6):061101. PubMed ID: 15740358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-dimensional quantum calculations of the vibrational states of H5(+).
    Song H; Lee SY; Yang M; Lu Y
    J Chem Phys; 2013 Mar; 138(12):124309. PubMed ID: 23556725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CVRQD ab initio ground-state adiabatic potential energy surfaces for the water molecule.
    Barletta P; Shirin SV; Zobov NF; Polyansky OL; Tennyson J; Valeev EF; Császár AG
    J Chem Phys; 2006 Nov; 125(20):204307. PubMed ID: 17144700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal proton transfer and H2 rotations in the H5(+) cluster: a marked influence on its thermal equilibrium state.
    de Tudela RP; Barragán P; Prosmiti R; Villarreal P; Delgado-Barrio G
    J Phys Chem A; 2011 Mar; 115(12):2483-8. PubMed ID: 21391537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ab initio based global potential energy surface describing CH5+ --> CH3+ + H2.
    Jin Z; Braams BJ; Bowman JM
    J Phys Chem A; 2006 Feb; 110(4):1569-74. PubMed ID: 16435818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.
    Viel A; Coutinho-Neto MD; Manthe U
    J Chem Phys; 2007 Jan; 126(2):024308. PubMed ID: 17228955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Communication: quasiclassical trajectory calculations of correlated product-state distributions for the dissociation of (H2O)2 and (D2O)2.
    Czakó G; Wang Y; Bowman JM
    J Chem Phys; 2011 Oct; 135(15):151102. PubMed ID: 22029289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of cobalt carbide (CoC) and its cation (CoC+).
    Lau KC; Pan Y; Lam CS; Huang H; Chang YC; Luo Z; Shi X; Ng CY
    J Chem Phys; 2013 Mar; 138(9):094302. PubMed ID: 23485289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigation of the infrared spectra of the H5(+) and D5(+) cations.
    Valdés Á; Prosmiti R
    J Phys Chem A; 2013 Oct; 117(39):9518-24. PubMed ID: 23390977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum and classical studies of vibrational motion of CH5+ on a global potential energy surface obtained from a novel ab initio direct dynamics approach.
    Brown A; McCoy AB; Braams BJ; Jin Z; Bowman JM
    J Chem Phys; 2004 Sep; 121(9):4105-16. PubMed ID: 15332956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication: rigorous calculation of dissociation energies (D0) of the water trimer, (H2O)3 and (D2O)3.
    Wang Y; Bowman JM
    J Chem Phys; 2011 Oct; 135(13):131101. PubMed ID: 21992272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles simulations of vibrational states and spectra for H5(+) and D5(+) clusters using multiconfiguration time-dependent Hartree approach.
    Valdés Á; Prosmiti R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Feb; 119():26-33. PubMed ID: 23763866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-dimensional ab initio potential energy surface and vibrational configuration interaction calculations for vinyl.
    Sharma AR; Braams BJ; Carter S; Shepler BC; Bowman JM
    J Chem Phys; 2009 May; 130(17):174301. PubMed ID: 19425770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio potential energy and dipole moment surfaces of (H2O)2.
    Huang X; Braams BJ; Bowman JM
    J Phys Chem A; 2006 Jan; 110(2):445-51. PubMed ID: 16405316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation energy of the water dimer from quantum Monte Carlo calculations.
    Gurtubay IG; Needs RJ
    J Chem Phys; 2007 Sep; 127(12):124306. PubMed ID: 17902902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formations of iron carbide (FeC) and its cation (FeC+).
    Lau KC; Chang YC; Lam CS; Ng CY
    J Phys Chem A; 2009 Dec; 113(52):14321-8. PubMed ID: 19775110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.