These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23862956)

  • 1. Initial reduction of the NiO(100) surface in hydrogen.
    Xu Q; Cheah S; Zhao Y
    J Chem Phys; 2013 Jul; 139(2):024704. PubMed ID: 23862956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cationic and anionic vacancies on the NiO(100) surface: DFT+U and hybrid functional density functional theory calculations.
    Ferrari AM; Pisani C; Cinquini F; Giordano L; Pacchioni G
    J Chem Phys; 2007 Nov; 127(17):174711. PubMed ID: 17994846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).
    Pan YX; Liu CJ; Mei D; Ge Q
    Langmuir; 2010 Apr; 26(8):5551-8. PubMed ID: 20047326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption.
    Maimaiti Y; Nolan M; Elliott SD
    Phys Chem Chem Phys; 2014 Feb; 16(7):3036-46. PubMed ID: 24394338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional theory study of water adsorption at reduced and stoichiometric ceria (111) surfaces.
    Kumar S; Schelling PK
    J Chem Phys; 2006 Nov; 125(20):204704. PubMed ID: 17144720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen activation, diffusion, and clustering on CeO₂(111): a DFT+U study.
    Fernández-Torre D; Carrasco J; Ganduglia-Pirovano MV; Pérez R
    J Chem Phys; 2014 Jul; 141(1):014703. PubMed ID: 25005299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The surface chemistry of water on Fe(100): a density functional theory study.
    Govender A; Ferré DC; Niemantsverdriet JW
    Chemphyschem; 2012 Apr; 13(6):1583-90. PubMed ID: 22298316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals.
    Raghunath P; Huang WF; Lin MC
    J Chem Phys; 2013 Apr; 138(15):154705. PubMed ID: 23614434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of and effect of coadsorption on water dissociation on an oxygen vacancy of the MgO(100) surface.
    Wang Y; Nguyen HN; Truong TN
    Chemistry; 2006 Jul; 12(22):5859-67. PubMed ID: 16729339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic hydrogen adsorption and incipient hydrogenation of the Mg(0001) surface: a density-functional theory study.
    Li Y; Zhang P; Sun B; Yang Y; Wei Y
    J Chem Phys; 2009 Jul; 131(3):034706. PubMed ID: 19624220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and mechanisms for the adsorption, dissociation, and diffusion of hydrogen in Ni and Ni/YSZ slabs: a DFT study.
    Weng MH; Chen HT; Wang YC; Ju SP; Chang JG; Lin MC
    Langmuir; 2012 Apr; 28(13):5596-605. PubMed ID: 22401369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics and interdiffusion at the Cu/Ru(0001) interface: density functional calculations.
    Shin J; Vita A; Windu S; Choi JH; Lee SC; Lee JG
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6589-93. PubMed ID: 22121762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic Analysis of Oxygen Vacancy-Driven Conductive Filament Formation in Resistive Random Access Memory Metal/NiO/Metal Structures.
    Yildirim H; Pachter R
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9802-9816. PubMed ID: 29488379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and theoretical studies on the reaction of H(2) with NiO: role of O vacancies and mechanism for oxide reduction.
    Rodriguez JA; Hanson JC; Frenkel AI; Kim JY; Pérez M
    J Am Chem Soc; 2002 Jan; 124(2):346-54. PubMed ID: 11782187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogenation of CO to Methanol on Ni(110) through Subsurface Hydrogen.
    Ashwell AP; Lin W; Hofman MS; Yang Y; Ratner MA; Koel BE; Schatz GC
    J Am Chem Soc; 2017 Dec; 139(48):17582-17589. PubMed ID: 29119795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Healing of oxygen vacancies on reduced surfaces of gold-doped ceria.
    Nolan M
    J Chem Phys; 2009 Apr; 130(14):144702. PubMed ID: 19368460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of adsorption of O((3)P) and H(2)O on the rutile TiO(2)(110) surface.
    Qu ZW; Kroes GJ
    J Phys Chem B; 2006 Nov; 110(46):23306-14. PubMed ID: 17107180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and mobility of vacancy-H complexes in Al.
    Benediktsson MT; Mýrdal KK; Maurya P; Pedersen A
    J Phys Condens Matter; 2013 Sep; 25(37):375401. PubMed ID: 23962804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MSINDO study of acid promoted dissolution of planar MgO and NiO surfaces.
    Simpson DJ; Bredow T; Gerson AR
    J Comput Chem; 2009 Mar; 30(4):581-8. PubMed ID: 18711715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.