These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23862961)

  • 1. Evolution of conductive network and properties of nanorod/polymer composite under tensile strain.
    Feng Y; Ning N; Zhang L; Tian M; Zou H; Mi J
    J Chem Phys; 2013 Jul; 139(2):024903. PubMed ID: 23862961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Destruction and recovery of a nanorod conductive network in polymer nanocomposites via molecular dynamics simulation.
    Gao Y; Cao D; Wu Y; Liu J; Zhang L
    Soft Matter; 2016 Mar; 12(12):3074-83. PubMed ID: 26895557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of the conductivity mechanism of nanorod filled polymer nanocomposites.
    Gao Y; Cao D; Liu J; Shen J; Wu Y; Zhang L
    Phys Chem Chem Phys; 2015 Sep; 17(35):22959-68. PubMed ID: 26267833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the electrical conductive network formation of polymer nanocomposites via polymer functionalization.
    Gao Y; Wu Y; Liu J; Zhang L
    Soft Matter; 2016 Dec; 12(48):9738-9748. PubMed ID: 27869283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular dynamics simulation.
    Gao Y; Liu J; Shen J; Zhang L; Guo Z; Cao D
    Phys Chem Chem Phys; 2014 Aug; 16(30):16039-48. PubMed ID: 24964005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of the electrical conductive network formation of polymer nanocomposites with polymer-grafted nanorods.
    Li F; Duan X; Zhang H; Li B; Liu J; Gao Y; Zhang L
    Phys Chem Chem Phys; 2018 Aug; 20(34):21822-21831. PubMed ID: 29987305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Percolation analysis of the electrical conductive network in a polymer nanocomposite by nanorod functionalization.
    Ma R; Mu G; Zhang H; Liu J; Gao Y; Zhao X; Zhang L
    RSC Adv; 2019 Nov; 9(62):36324-36333. PubMed ID: 35540620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect in improving the electrical conductivity in polymer nanocomposites by mixing spherical and rod-shaped fillers.
    Qu F; Sun W; Li B; Li F; Gao Y; Zhao X; Zhang L
    Soft Matter; 2020 Dec; 16(46):10454-10462. PubMed ID: 33057553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of the rupture mechanism in nanorod filled polymer nanocomposites.
    Gao Y; Liu J; Shen J; Cao D; Zhang L
    Phys Chem Chem Phys; 2014 Sep; 16(34):18483-92. PubMed ID: 25072998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Nanorod Physical Roughness on the Aggregation and Percolation of Nanorods in Polymer Nanocomposites.
    Lu S; Jayaraman A
    ACS Macro Lett; 2021 Nov; 10(11):1416-1422. PubMed ID: 35549008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments.
    Simoes R; Silva J; Vaia R; Sencadas V; Costa P; Gomes J; Lanceros-Méndez S
    Nanotechnology; 2009 Jan; 20(3):035703. PubMed ID: 19417305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase behavior of polymer-nanorod composites: A comparative study using PRISM theory and molecular dynamics simulations.
    Erigi U; Dhumal U; Tripathy M
    J Chem Phys; 2021 Mar; 154(12):124903. PubMed ID: 33810681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties.
    Zhang S; Deng H; Zhang Q; Fu Q
    ACS Appl Mater Interfaces; 2014 May; 6(9):6835-44. PubMed ID: 24745303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer-mediated self-assembly, dispersion, and phase separation of Janus nanorods.
    Dhumal U; Erigi U; Tripathy M
    Phys Chem Chem Phys; 2022 Oct; 24(38):23634-23650. PubMed ID: 36134618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the electrical conductive network formation in nanorod filled polymer nanocomposites by tuning nanorod stiffness.
    Gao Y; Ma R; Zhang H; Liu J; Zhao X; Zhang L
    RSC Adv; 2018 Aug; 8(53):30248-30256. PubMed ID: 35546821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring nanorod alignment in a polymer matrix by elongational flow under confinement: simulation, experiments, and surface enhanced Raman scattering application.
    Park JH; Joo YL
    Soft Matter; 2014 May; 10(19):3494-505. PubMed ID: 24652583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronously Tailoring Strain Sensitivity and Electrical Stability of Silicone Elastomer Composites by the Synergistic Effect of a Dual Conductive Network.
    Ning N; Wang S; Zhang L; Lu Y; Tian M; Chan TW
    Polymers (Basel); 2016 Mar; 8(4):. PubMed ID: 30979208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films.
    Rahman R; Servati P
    Nanotechnology; 2012 Feb; 23(5):055703. PubMed ID: 22236792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative assessment on the orientation and distribution of carbon fibers in a conductive polymer composite using high-frequency ultrasound.
    Lin YH; Huang CC; Wang SH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):970-80. PubMed ID: 22622982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.