These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23863045)

  • 21. Structure determination of the extracellular xylanase from Geobacillus stearothermophilus by selenomethionyl MAD phasing.
    Teplitsky A; Mechaly A; Stojanoff V; Sainz G; Golan G; Feinberg H; Gilboa R; Reiland V; Zolotnitsky G; Shallom D; Thompson A; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):836-48. PubMed ID: 15103129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry.
    Zolotnitsky G; Cogan U; Adir N; Solomon V; Shoham G; Shoham Y
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11275-80. PubMed ID: 15277671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure determination and biochemical studies on Bacillus stearothermophilus E53Q serine hydroxymethyltransferase and its complexes provide insights on function and enzyme memory.
    Rajaram V; Bhavani BS; Kaul P; Prakash V; Appaji Rao N; Savithri HS; Murthy MR
    FEBS J; 2007 Aug; 274(16):4148-60. PubMed ID: 17651438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure features of GH10 xylanase from Caldicellulosiruptor bescii: implication for its thermophilic adaption and substrate binding preference.
    Zhang Y; An J; Yang G; Zhang X; Xie Y; Chen L; Feng Y
    Acta Biochim Biophys Sin (Shanghai); 2016 Oct; 48(10):948-957. PubMed ID: 27563004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis.
    Zhang ZG; Yi ZL; Pei XQ; Wu ZL
    Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the structures of wild-type and a N313T mutant of Escherichia coli glyceraldehyde 3-phosphate dehydrogenases: implication for NAD binding and cooperativity.
    Duée E; Olivier-Deyris L; Fanchon E; Corbier C; Branlant G; Dideberg O
    J Mol Biol; 1996 Apr; 257(4):814-38. PubMed ID: 8636984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structures of the sugar complexes of Streptomyces olivaceoviridis E-86 xylanase: sugar binding structure of the family 13 carbohydrate binding module.
    Fujimoto Z; Kuno A; Kaneko S; Kobayashi H; Kusakabe I; Mizuno H
    J Mol Biol; 2002 Feb; 316(1):65-78. PubMed ID: 11829503
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving catalytic efficiency of endo-β-1, 4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis.
    Wang Y; Feng S; Zhan T; Huang Z; Wu G; Liu Z
    J Biotechnol; 2013 Dec; 168(4):341-7. PubMed ID: 24157442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining weak affinity chromatography, NMR spectroscopy and molecular simulations in carbohydrate-lysozyme interaction studies.
    Landström J; Bergström M; Hamark C; Ohlson S; Widmalm G
    Org Biomol Chem; 2012 Apr; 10(15):3019-32. PubMed ID: 22395160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the beta-1,4-xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product.
    De Vos D; Collins T; Nerinckx W; Savvides SN; Claeyssens M; Gerday C; Feller G; Van Beeumen J
    Biochemistry; 2006 Apr; 45(15):4797-807. PubMed ID: 16605248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation.
    Sermsathanaswadi J; Baramee S; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Kosugi A
    Enzyme Microb Technol; 2017 Jan; 96():75-84. PubMed ID: 27871388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.
    Angulo J; Enríquez-Navas PM; Nieto PM
    Chemistry; 2010 Jul; 16(26):7803-12. PubMed ID: 20496354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into the roles of non-catalytic residues in the active site of a GH10 xylanase with activity on cellulose.
    Chu Y; Tu T; Penttinen L; Xue X; Wang X; Yi Z; Gong L; Rouvinen J; Luo H; Hakulinen N; Yao B; Su X
    J Biol Chem; 2017 Nov; 292(47):19315-19327. PubMed ID: 28974575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMR structure of cysteinyl-phosphorylated enzyme IIB of the N,N'-diacetylchitobiose-specific phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli.
    Ab E; Schuurman-Wolters GK; Nijlant D; Dijkstra K; Saier MH; Robillard GT; Scheek RM
    J Mol Biol; 2001 May; 308(5):993-1009. PubMed ID: 11352587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001.
    Hwang IT; Lim HK; Song HY; Cho SJ; Chang JS; Park NJ
    Biotechnol Adv; 2010; 28(5):594-601. PubMed ID: 20493247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus.
    Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and function of a family 10 beta-xylanase chimera of Streptomyces olivaceoviridis E-86 FXYN and Cellulomonas fimi Cex.
    Kaneko S; Ichinose H; Fujimoto Z; Kuno A; Yura K; Go M; Mizuno H; Kusakabe I; Kobayashi H
    J Biol Chem; 2004 Jun; 279(25):26619-26. PubMed ID: 15078885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystallization and preliminary X-ray crystallographic study of a 23S rRNA binding domain of the ribosomal protein L2 from Bacillus stearothermophilus.
    Nakashima T; Kimura M; Nakagawa A; Tanaka I
    J Struct Biol; 1998 Dec; 124(1):99-101. PubMed ID: 9931278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.