These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23863166)

  • 21. The role of pseudokinases in cancer.
    Zhang H; Photiou A; Grothey A; Stebbing J; Giamas G
    Cell Signal; 2012 Jun; 24(6):1173-84. PubMed ID: 22330072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Ligand Binding to Pseudokinases Using a Thermal Shift Assay.
    Lucet IS; Murphy JM
    Methods Mol Biol; 2017; 1636():91-104. PubMed ID: 28730475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudokinases: Prospects for expanding the therapeutic targets armamentarium.
    Devang N; Pani A; Rajanikant GK
    Adv Protein Chem Struct Biol; 2021; 124():121-185. PubMed ID: 33632464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the nucleotide binding properties of SV40 T antigen using fluorescent 3'(2')-O-(2,4,6-trinitrophenyl)adenine nucleotide analogues.
    Huang SG; Weisshart K; Fanning E
    Biochemistry; 1998 Nov; 37(44):15336-44. PubMed ID: 9799494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional classification of protein kinase binding sites using Cavbase.
    Kuhn D; Weskamp N; Hüllermeier E; Klebe G
    ChemMedChem; 2007 Oct; 2(10):1432-47. PubMed ID: 17694525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformationally selective binding of nucleotide analogues to Escherichia coli RecA: a ligand-based analysis of the RecA ATP binding site.
    Wigle TJ; Lee AM; Singleton SF
    Biochemistry; 2006 Apr; 45(14):4502-13. PubMed ID: 16584186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical genetic analysis of protein kinase function in plants.
    Böhmer M; Bölker M; Romeis T
    Methods Mol Biol; 2011; 779():259-71. PubMed ID: 21837572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular adaptability of nucleoside diphosphate kinase b from trypanosomatid parasites: stability, oligomerization and structural determinants of nucleotide binding.
    Souza TA; Trindade DM; Tonoli CC; Santos CR; Ward RJ; Arni RK; Oliveira AH; Murakami MT
    Mol Biosyst; 2011 Jul; 7(7):2189-95. PubMed ID: 21528129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of caged compounds binding to proteins by NMR spectroscopy.
    Bandorowicz-Pikula J; Buchet R; Cañada FJ; Clémancey M; Groves P; Jiménez-Barbero J; Lancelin JM; Marcillat O; Pikula S; Sekrecka-Belniak A; Strzelecka-Kiliszek A
    Biochem Biophys Res Commun; 2010 Sep; 400(3):447-51. PubMed ID: 20804737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery and characterization of non-ATP site inhibitors of the mitogen activated protein (MAP) kinases.
    Comess KM; Sun C; Abad-Zapatero C; Goedken ER; Gum RJ; Borhani DW; Argiriadi M; Groebe DR; Jia Y; Clampit JE; Haasch DL; Smith HT; Wang S; Song D; Coen ML; Cloutier TE; Tang H; Cheng X; Quinn C; Liu B; Xin Z; Liu G; Fry EH; Stoll V; Ng TI; Banach D; Marcotte D; Burns DJ; Calderwood DJ; Hajduk PJ
    ACS Chem Biol; 2011 Mar; 6(3):234-44. PubMed ID: 21090814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of methyl-TROSY NMR to test allosteric models describing effects of nucleotide binding to aspartate transcarbamoylase.
    Velyvis A; Schachman HK; Kay LE
    J Mol Biol; 2009 Apr; 387(3):540-7. PubMed ID: 19302799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping of the ATP-binding domain of human fructosamine 3-kinase-related protein by affinity labelling with 5'-[p-(fluorosulfonyl)benzoyl]adenosine.
    Payne LS; Brown PM; Middleditch M; Baker E; Cooper GJ; Loomes KM
    Biochem J; 2008 Dec; 416(2):281-8. PubMed ID: 18637789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel kinase inhibitors by reshuffling ligand functionalities across the human kinome.
    Vidović D; Muskal SM; Schürer SC
    J Chem Inf Model; 2012 Dec; 52(12):3107-15. PubMed ID: 23121521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase.
    Langer T; Vogtherr M; Elshorst B; Betz M; Schieborr U; Saxena K; Schwalbe H
    Chembiochem; 2004 Nov; 5(11):1508-16. PubMed ID: 15481030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleotide-induced conformational changes in the Saccharomyces cerevisiae SR protein kinase, Sky1p, revealed by X-ray crystallography.
    Nolen B; Ngo J; Chakrabarti S; Vu D; Adams JA; Ghosh G
    Biochemistry; 2003 Aug; 42(32):9575-85. PubMed ID: 12911299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Day of the dead: pseudokinases and pseudophosphatases in physiology and disease.
    Reiterer V; Eyers PA; Farhan H
    Trends Cell Biol; 2014 Sep; 24(9):489-505. PubMed ID: 24818526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stoichiometry and affinity of nucleotide binding to P-glycoprotein during the catalytic cycle.
    Qu Q; Russell PL; Sharom FJ
    Biochemistry; 2003 Feb; 42(4):1170-7. PubMed ID: 12549939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dual function of KSR1: a pseudokinase and beyond.
    Zhang H; Koo CY; Stebbing J; Giamas G
    Biochem Soc Trans; 2013 Aug; 41(4):1078-82. PubMed ID: 23863182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methods for discovering catalytic activities for pseudokinases.
    Black MH; Gradowski M; Pawłowski K; Tagliabracci VS
    Methods Enzymol; 2022; 667():575-610. PubMed ID: 35525554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new paradigm for protein kinase inhibition: blocking phosphorylation without directly targeting ATP binding.
    Bogoyevitch MA; Fairlie DP
    Drug Discov Today; 2007 Aug; 12(15-16):622-33. PubMed ID: 17706543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.