These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 23863178)

  • 21. A casein kinase I motif present in the cytoplasmic domain of members of the tumour necrosis factor ligand family is implicated in 'reverse signalling'.
    Watts AD; Hunt NH; Wanigasekara Y; Bloomfield G; Wallach D; Roufogalis BD; Chaudhri G
    EMBO J; 1999 Apr; 18(8):2119-26. PubMed ID: 10205166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transportin: nuclear transport receptor of a novel nuclear protein import pathway.
    Nakielny S; Siomi MC; Siomi H; Michael WM; Pollard V; Dreyfuss G
    Exp Cell Res; 1996 Dec; 229(2):261-6. PubMed ID: 8986607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The dual function of KSR1: a pseudokinase and beyond.
    Zhang H; Koo CY; Stebbing J; Giamas G
    Biochem Soc Trans; 2013 Aug; 41(4):1078-82. PubMed ID: 23863182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SF-1 (nuclear receptor 5A1) activity is activated by cyclic AMP via p300-mediated recruitment to active foci, acetylation, and increased DNA binding.
    Chen WY; Juan LJ; Chung BC
    Mol Cell Biol; 2005 Dec; 25(23):10442-53. PubMed ID: 16287857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CHMP7, a novel ESCRT-III-related protein, associates with CHMP4b and functions in the endosomal sorting pathway.
    Horii M; Shibata H; Kobayashi R; Katoh K; Yorikawa C; Yasuda J; Maki M
    Biochem J; 2006 Nov; 400(1):23-32. PubMed ID: 16856878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracing the origin and evolution of pseudokinases across the tree of life.
    Kwon A; Scott S; Taujale R; Yeung W; Kochut KJ; Eyers PA; Kannan N
    Sci Signal; 2019 Apr; 12(578):. PubMed ID: 31015289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospects for pharmacological targeting of pseudokinases.
    Kung JE; Jura N
    Nat Rev Drug Discov; 2019 Jul; 18(7):501-526. PubMed ID: 30850748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Receptor tyrosine kinases with intracellular pseudokinase domains.
    Mendrola JM; Shi F; Park JH; Lemmon MA
    Biochem Soc Trans; 2013 Aug; 41(4):1029-36. PubMed ID: 23863174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pseudokinases-remnants of evolution or key allosteric regulators?
    Zeqiraj E; van Aalten DM
    Curr Opin Struct Biol; 2010 Dec; 20(6):772-81. PubMed ID: 21074407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pseudokinases: Prospects for expanding the therapeutic targets armamentarium.
    Devang N; Pani A; Rajanikant GK
    Adv Protein Chem Struct Biol; 2021; 124():121-185. PubMed ID: 33632464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of pseudokinases in cancer.
    Zhang H; Photiou A; Grothey A; Stebbing J; Giamas G
    Cell Signal; 2012 Jun; 24(6):1173-84. PubMed ID: 22330072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Looking lively: emerging principles of pseudokinase signaling.
    Sheetz JB; Lemmon MA
    Trends Biochem Sci; 2022 Oct; 47(10):875-891. PubMed ID: 35585008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pseudokinases: update on their functions and evaluation as new drug targets.
    Byrne DP; Foulkes DM; Eyers PA
    Future Med Chem; 2017 Jan; 9(2):245-265. PubMed ID: 28097887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The secret life of kinases: insights into non-catalytic signalling functions from pseudokinases.
    Jacobsen AV; Murphy JM
    Biochem Soc Trans; 2017 Jun; 45(3):665-681. PubMed ID: 28620028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. There's more to death than life: Noncatalytic functions in kinase and pseudokinase signaling.
    Mace PD; Murphy JM
    J Biol Chem; 2021; 296():100705. PubMed ID: 33895136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The PEAK family of pseudokinases, their role in cell signalling and cancer.
    Patel O; Roy MJ; Murphy JM; Lucet IS
    FEBS J; 2020 Oct; 287(19):4183-4197. PubMed ID: 31599110
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Ligand Binding to Pseudokinases Using a Thermal Shift Assay.
    Lucet IS; Murphy JM
    Methods Mol Biol; 2017; 1636():91-104. PubMed ID: 28730475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational tools and resources for pseudokinase research.
    O'Boyle B; Shrestha S; Kochut K; Eyers PA; Kannan N
    Methods Enzymol; 2022; 667():403-426. PubMed ID: 35525549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein engineering strategies to stimulate the functions of bacterial pseudokinases.
    Yang X; Kowallis KA; Childers WS
    Methods Enzymol; 2022; 667():275-302. PubMed ID: 35525544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Going for broke: targeting the human cancer pseudokinome.
    Bailey FP; Byrne DP; McSkimming D; Kannan N; Eyers PA
    Biochem J; 2015 Jan; 465(2):195-211. PubMed ID: 25559089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.