BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23863193)

  • 1. Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins.
    Nagatomo S; Nagai M; Ogura T; Kitagawa T
    J Phys Chem B; 2013 Aug; 117(32):9343-53. PubMed ID: 23863193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-UV circular dichroism and UV resonance Raman spectra of individual tryptophan residues in human hemoglobin and their changes upon the quaternary structure transition.
    Nagai M; Nagatomo S; Nagai Y; Ohkubo K; Imai K; Kitagawa T
    Biochemistry; 2012 Jul; 51(30):5932-41. PubMed ID: 22769585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme.
    Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T
    Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine and tryptophan structure markers in hemoglobin ultraviolet resonance Raman spectra: mode assignments via subunit-specific isotope labeling of recombinant protein.
    Hu X; Spiro TG
    Biochemistry; 1997 Dec; 36(50):15701-12. PubMed ID: 9398299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraviolet resonance Raman studies of quaternary structure of hemoglobin using a tryptophan beta 37 mutant.
    Nagai M; Kaminaka S; Ohba Y; Nagai Y; Mizutani Y; Kitagawa T
    J Biol Chem; 1995 Jan; 270(4):1636-42. PubMed ID: 7829496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen bonding and solvent polarity markers in the uv resonance raman spectrum of tryptophan: application to membrane proteins.
    Schlamadinger DE; Gable JE; Kim JE
    J Phys Chem B; 2009 Nov; 113(44):14769-78. PubMed ID: 19817473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quaternary structure sensitive tyrosine residues in human hemoglobin: UV resonance raman studies of mutants at alpha140, beta35, and beta145 tyrosine.
    Nagai M; Wajcman H; Lahary A; Nakatsukasa T; Nagatomo S; Kitagawa T
    Biochemistry; 1999 Jan; 38(4):1243-51. PubMed ID: 9930984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan mutants of intestinal fatty acid-binding protein: ultraviolet absorption and circular dichroism studies.
    Clérico EM; Ermácora MR
    Arch Biochem Biophys; 2001 Nov; 395(2):215-24. PubMed ID: 11697859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman structural markers of tryptophan and histidine side chains in proteins.
    Takeuchi H
    Biopolymers; 2003; 72(5):305-17. PubMed ID: 12949821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet resonance Raman spectra of Trp-182 and Trp-189 in bacteriorhodopsin: novel information on the structure of Trp-182 and its steric interaction with retinal.
    Hashimoto S; Obata K; Takeuchi H; Needleman R; Lanyi JK
    Biochemistry; 1997 Sep; 36(39):11583-90. PubMed ID: 9305948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of local native-like tertiary structures in the slow refolding reaction of human carbonic anhydrase II as monitored by circular dichroism on tryptophan mutants.
    Andersson D; Freskgård PO; Jonsson BH; Carlsson U
    Biochemistry; 1997 Apr; 36(15):4623-30. PubMed ID: 9109672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet resonance Raman spectroscopy of folded and unfolded states of an integral membrane protein.
    Sanchez KM; Neary TJ; Kim JE
    J Phys Chem B; 2008 Aug; 112(31):9507-11. PubMed ID: 18588328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine, phenylalanine, and disulfide contributions to the circular dichroism of proteins: circular dichroism spectra of wild-type and mutant bovine pancreatic trypsin inhibitor.
    Sreerama N; Manning MC; Powers ME; Zhang JX; Goldenberg DP; Woody RW
    Biochemistry; 1999 Aug; 38(33):10814-22. PubMed ID: 10451378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and interactions of the single-stranded DNA genome of filamentous virus fd: investigation by ultraviolet resonance raman spectroscopy.
    Wen ZQ; Overman SA; Thomas GJ
    Biochemistry; 1997 Jun; 36(25):7810-20. PubMed ID: 9201924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving near-ultraviolet circular dichroism spectra of single trp mutants in tear lipocalin.
    Gasymov OK; Abduragimov AR; Yusifov TN; Glasgow BJ
    Anal Biochem; 2003 Jul; 318(2):300-8. PubMed ID: 12814635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic tryptophans of CRABPI as probes of structure and folding.
    Clark PL; Liu ZP; Zhang J; Gierasch LM
    Protein Sci; 1996 Jun; 5(6):1108-17. PubMed ID: 8762142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles calculations of protein circular dichroism in the near ultraviolet.
    Rogers DM; Hirst JD
    Biochemistry; 2004 Aug; 43(34):11092-102. PubMed ID: 15323568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of tryptophan residues to the CD spectrum of the extracellular domain of human tissue factor: application in folding studies and prediction of secondary structure.
    Andersson D; Carlsson U; Freskgård PO
    Eur J Biochem; 2001 Feb; 268(4):1118-28. PubMed ID: 11179978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early events in apomyoglobin unfolding probed by laser T-jump/UV resonance Raman spectroscopy.
    Huang CY; Balakrishnan G; Spiro TG
    Biochemistry; 2005 Dec; 44(48):15734-42. PubMed ID: 16313176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aromatic Cluster Sensor of Protein Folding: Near-UV Electronic Circular Dichroism Bands Assigned to Fold Compactness.
    Farkas V; Jákli I; Tóth GK; Perczel A
    Chemistry; 2016 Sep; 22(39):13871-13883. PubMed ID: 27504963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.