BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23863277)

  • 1. Giant intracranial aneurysm embolization with a yield stress fluid material: insights from CFD analysis.
    Wang W; Graziano F; Russo V; Ulm AJ; De Kee D; Khismatullin DB
    Biorheology; 2013; 50(3-4):99-114. PubMed ID: 23863277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CFD modeling of blood flow following coil embolization of aneurysms.
    Byun HS; Rhee K
    Med Eng Phys; 2004 Nov; 26(9):755-61. PubMed ID: 15564112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current status of computational fluid dynamics for cerebral aneurysms: the clinician's perspective.
    Wong GK; Poon WS
    J Clin Neurosci; 2011 Oct; 18(10):1285-8. PubMed ID: 21795051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood flow dynamics in saccular aneurysm models of the basilar artery.
    Valencia AA; Guzmán AM; Finol EA; Amon CH
    J Biomech Eng; 2006 Aug; 128(4):516-26. PubMed ID: 16813443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.
    Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H
    J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms.
    Fisher C; Rossmann JS
    J Biomech Eng; 2009 Sep; 131(9):091004. PubMed ID: 19725693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis.
    Shi C; Kojima M; Anzai H; Tercero C; Ikeda S; Ohta M; Fukuda T; Arai F; Najdovski Z; Negoro M; Irie K
    Int J Med Robot; 2013 Jun; 9(2):213-22. PubMed ID: 23483681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Fluid Dynamics to Evaluate the Management of a Giant Internal Carotid Artery Aneurysm.
    Russin J; Babiker H; Ryan J; Rangel-Castilla L; Frakes D; Nakaji P
    World Neurosurg; 2015 Jun; 83(6):1057-65. PubMed ID: 25541083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamics of cerebral aneurysm coiling using high-resolution and high-energy synchrotron X-ray microtomography: comparison with the homogeneous porous medium approach.
    Levitt MR; Barbour MC; Rolland du Roscoat S; Geindreau C; Chivukula VK; McGah PM; Nerva JD; Morton RP; Kim LJ; Aliseda A
    J Neurointerv Surg; 2017 Aug; 9(8):0. PubMed ID: 27405312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring high frequency temporal fluctuations in the terminal aneurysm of the basilar bifurcation.
    Ford MD; Piomelli U
    J Biomech Eng; 2012 Sep; 134(9):091003. PubMed ID: 22938370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms.
    Morales HG; Larrabide I; Geers AJ; Aguilar ML; Frangi AF
    J Biomech; 2013 Sep; 46(13):2158-64. PubMed ID: 23891312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro study of pulsatile fluid dynamics in intracranial aneurysm models treated with embolic coils and flow diverters.
    Babiker MH; Gonzalez LF; Albuquerque F; Collins D; Elvikis A; Zwart C; Roszelle B; Frakes DH
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):1150-9. PubMed ID: 23192467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment.
    Kakalis NM; Mitsos AP; Byrne JV; Ventikos Y
    IEEE Trans Med Imaging; 2008 Jun; 27(6):814-24. PubMed ID: 18541488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm.
    Valen-Sendstad K; Mardal KA; Mortensen M; Reif BA; Langtangen HP
    J Biomech; 2011 Nov; 44(16):2826-32. PubMed ID: 21924724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angular remodeling in single stent-assisted coiling displaces and attenuates the flow impingement zone at the neck of intracranial bifurcation aneurysms.
    Gao B; Baharoglu MI; Malek AM
    Neurosurgery; 2013 May; 72(5):739-48; discussion 748. PubMed ID: 23328687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-induced wall mechanics of patient-specific aneurysmal cerebral arteries: Nonlinear isotropic versus anisotropic wall stress.
    Cornejo S; Guzmán A; Valencia A; Rodríguez J; Finol E
    Proc Inst Mech Eng H; 2014 Jan; 228(1):37-48. PubMed ID: 24280227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries?
    Arzani A
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms.
    Suzuki T; Takao H; Suzuki T; Suzuki T; Masuda S; Dahmani C; Watanabe M; Mamori H; Ishibashi T; Yamamoto H; Yamamoto M; Murayama Y
    Technol Health Care; 2017; 25(1):37-47. PubMed ID: 27497460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational study for the effects of coil configuration on blood flow characteristics in coil-embolized cerebral aneurysm.
    Otani T; Ii S; Shigematsu T; Fujinaka T; Hirata M; Ozaki T; Wada S
    Med Biol Eng Comput; 2017 May; 55(5):697-710. PubMed ID: 27444298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.