BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23863291)

  • 1. A role of the transcriptional regulator LldR (NCgl2814) in glutamate metabolism under biotin-limited conditions in Corynebacterium glutamicum.
    Supkulsutra T; Maeda T; Kumagai K; Wachi M
    J Gen Appl Microbiol; 2013; 59(3):207-14. PubMed ID: 23863291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum.
    Georgi T; Engels V; Wendisch VF
    J Bacteriol; 2008 Feb; 190(3):963-71. PubMed ID: 18039772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ldhA gene, encoding fermentative L-lactate dehydrogenase of Corynebacterium glutamicum, is under the control of positive feedback regulation mediated by LldR.
    Toyoda K; Teramoto H; Inui M; Yukawa H
    J Bacteriol; 2009 Jul; 191(13):4251-8. PubMed ID: 19429617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing lactate secretion by ldhA Deletion in L-glutamate- producing strain Corynebacterium glutamicum GDK-9.
    Zhang D; Guan D; Liang J; Guo C; Xie X; Zhang C; Xu Q; Chen N
    Braz J Microbiol; 2014; 45(4):1477-83. PubMed ID: 25763057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization.
    Gao YG; Suzuki H; Itou H; Zhou Y; Tanaka Y; Wachi M; Watanabe N; Tanaka I; Yao M
    Nucleic Acids Res; 2008 Dec; 36(22):7110-23. PubMed ID: 18988622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
    Stansen C; Uy D; Delaunay S; Eggeling L; Goergen JL; Wendisch VF
    Appl Environ Microbiol; 2005 Oct; 71(10):5920-8. PubMed ID: 16204505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in Corynebacterium glutamicum.
    Engels V; Lindner SN; Wendisch VF
    J Bacteriol; 2008 Dec; 190(24):8033-44. PubMed ID: 18849435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum.
    Sato H; Orishimo K; Shirai T; Hirasawa T; Nagahisa K; Shimizu H; Wachi M
    J Biosci Bioeng; 2008 Jul; 106(1):51-8. PubMed ID: 18691531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The
    Toyoda K; Inui M
    Microorganisms; 2021 Mar; 9(3):. PubMed ID: 33800875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum.
    Dietrich C; Nato A; Bost B; Le Maréchal P; Guyonvarch A
    Microbiology (Reading); 2009 Apr; 155(Pt 4):1360-1375. PubMed ID: 19332837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding L-lactate dehydrogenase in Corynebacterium glutamicum.
    Toyoda K; Teramoto H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 May; 83(2):315-27. PubMed ID: 19221735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic characterisation of recombinant Corynebacterium glutamicum NAD+-dependent LDH over-expressed in E. coli and its rescue of an lldD- phenotype in C. glutamicum: the issue of reversibility re-examined.
    Sharkey MA; Maher MA; Guyonvarch A; Engel PC
    Arch Microbiol; 2011 Oct; 193(10):731-40. PubMed ID: 21567176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual role of LldR in regulation of the lldPRD operon, involved in L-lactate metabolism in Escherichia coli.
    Aguilera L; Campos E; Giménez R; Badía J; Aguilar J; Baldoma L
    J Bacteriol; 2008 Apr; 190(8):2997-3005. PubMed ID: 18263722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation.
    Okino S; Suda M; Fujikura K; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):449-54. PubMed ID: 18188553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the supply of oxaloacetate for L-glutamate production by pyc overexpression in different Corynebacterium glutamicum.
    Guo X; Wang J; Xie X; Xu Q; Zhang C; Chen N
    Biotechnol Lett; 2013 Jun; 35(6):943-50. PubMed ID: 23690048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.
    Peters-Wendisch P; Stansen KC; Götker S; Wendisch VF
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2493-502. PubMed ID: 22159614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR.
    Krömer JO; Bolten CJ; Heinzle E; Schröder H; Wittmann C
    Microbiology (Reading); 2008 Dec; 154(Pt 12):3917-3930. PubMed ID: 19047758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual production of poly(3-hydroxybutyrate) and glutamate using variable biotin concentrations in Corynebacterium glutamicum.
    Jo SJ; Leong CR; Matsumoto K; Taguchi S
    J Biosci Bioeng; 2009 Apr; 107(4):409-11. PubMed ID: 19332300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
    Lubitz D; Wendisch VF
    BMC Microbiol; 2016 Oct; 16(1):235. PubMed ID: 27717325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.
    Cao Y; Duan Z; Shi Z
    World J Microbiol Biotechnol; 2014 Feb; 30(2):461-8. PubMed ID: 23990041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.