BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 23863393)

  • 1. Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water.
    Repo E; Warchoł JK; Bhatnagar A; Mudhoo A; Sillanpää M
    Water Res; 2013 Sep; 47(14):4812-32. PubMed ID: 23863393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents.
    Repo E; Kurniawan TA; Warchol JK; Sillanpää ME
    J Hazard Mater; 2009 Nov; 171(1-3):1071-80. PubMed ID: 19632777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent.
    Tseng JY; Chang CY; Chang CF; Chen YH; Chang CC; Ji DR; Chiu CY; Chiang PC
    J Hazard Mater; 2009 Nov; 171(1-3):370-7. PubMed ID: 19595507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of heavy metals from water effluents using supermacroporous metal chelating cryogels.
    Onnby L; Giorgi C; Plieva FM; Mattiasson B
    Biotechnol Prog; 2010; 26(5):1295-302. PubMed ID: 20945486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of silver nanoparticles in aqueous aminopolycarboxylic acid solutions via γ-irradiation and hydrogen reduction.
    Malkar VV; Mukherjee T; Kapoor S
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():87-91. PubMed ID: 25280683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost adsorbents for heavy metals uptake from contaminated water: a review.
    Babel S; Kurniawan TA
    J Hazard Mater; 2003 Feb; 97(1-3):219-43. PubMed ID: 12573840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals.
    Ahmaruzzaman M
    Adv Colloid Interface Sci; 2011 Aug; 166(1-2):36-59. PubMed ID: 21669401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental fate and microbial degradation of aminopolycarboxylic acids.
    Bucheli-Witschel M; Egli T
    FEMS Microbiol Rev; 2001 Jan; 25(1):69-106. PubMed ID: 11152941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals.
    Kurniawan TA; Chan GY; Lo WH; Babel S
    Sci Total Environ; 2006 Aug; 366(2-3):409-26. PubMed ID: 16300818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental effects and desorption characteristics on heavy metal removal using carboxylated alginic acid.
    Jeon C; Je Yoo Y; Hoell WH
    Bioresour Technol; 2005 Jan; 96(1):15-9. PubMed ID: 15364075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of heavy metals through adsorption using sand.
    Awan MA; Qazi IA; Khalid I
    J Environ Sci (China); 2003 May; 15(3):413-6. PubMed ID: 12938995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption performances and mechanisms of the newly synthesized N,N'-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media.
    Jing X; Liu F; Yang X; Ling P; Li L; Long C; Li A
    J Hazard Mater; 2009 Aug; 167(1-3):589-96. PubMed ID: 19264406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced phytoextraction: in search of EDTA alternatives.
    Meers E; Hopgood M; Lesage E; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2004; 6(2):95-109. PubMed ID: 15328977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review.
    Wan Ngah WS; Hanafiah MA
    Bioresour Technol; 2008 Jul; 99(10):3935-48. PubMed ID: 17681755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of EDTA, NTA and picolinic acid on Th(IV) mobility in a ternary system with natural sand.
    Reinoso-Maset E; Worsfold PJ; Keith-Roach MJ
    Environ Pollut; 2012 Mar; 162():399-405. PubMed ID: 22243891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of chemically modified low cost adsorbents for the removal of heavy metals from waste water: a comparative study.
    Saravanane R; Sundararajan T; Reddy SS
    Indian J Environ Health; 2002 Apr; 44(2):78-87. PubMed ID: 14503378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials.
    Repo E; Warchoł JK; Bhatnagar A; Sillanpää M
    J Colloid Interface Sci; 2011 Jun; 358(1):261-7. PubMed ID: 21440904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of heavy metals from contaminated water by petiolar felt-sheath of palm.
    Iqbal M; Saeed A
    Environ Technol; 2002 Oct; 23(10):1091-8. PubMed ID: 12465835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of aerobic granules in the presence of a synthetic chelating agent.
    Nancharaiah YV; Joshi HM; Krishna Mohan TV; Venugopalan VP; Narasimhan SV
    Environ Pollut; 2008 May; 153(1):37-43. PubMed ID: 18166252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.