These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 23863610)
1. Estrogen reduces mechanical injury-related cell death and proteoglycan degradation in mature articular cartilage independent of the presence of the superficial zone tissue. Imgenberg J; Rolauffs B; Grodzinsky AJ; Schünke M; Kurz B Osteoarthritis Cartilage; 2013 Nov; 21(11):1738-45. PubMed ID: 23863610 [TBL] [Abstract][Full Text] [Related]
2. IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage. Behrendt P; Preusse-Prange A; Klüter T; Haake M; Rolauffs B; Grodzinsky AJ; Lippross S; Kurz B Osteoarthritis Cartilage; 2016 Nov; 24(11):1981-1988. PubMed ID: 27349464 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms and kinetics of glycosaminoglycan release following in vitro cartilage injury. DiMicco MA; Patwari P; Siparsky PN; Kumar S; Pratta MA; Lark MW; Kim YJ; Grodzinsky AJ Arthritis Rheum; 2004 Mar; 50(3):840-8. PubMed ID: 15022326 [TBL] [Abstract][Full Text] [Related]
4. Proteoglycan degradation after injurious compression of bovine and human articular cartilage in vitro: interaction with exogenous cytokines. Patwari P; Cook MN; DiMicco MA; Blake SM; James IE; Kumar S; Cole AA; Lark MW; Grodzinsky AJ Arthritis Rheum; 2003 May; 48(5):1292-301. PubMed ID: 12746902 [TBL] [Abstract][Full Text] [Related]
5. Cyclooxygenase inhibition lowers prostaglandin E2 release from articular cartilage and reduces apoptosis but not proteoglycan degradation following an impact load in vitro. Jeffrey JE; Aspden RM Arthritis Res Ther; 2007; 9(6):R129. PubMed ID: 18096078 [TBL] [Abstract][Full Text] [Related]
6. Mechanical injury potentiates proteoglycan catabolism induced by interleukin-6 with soluble interleukin-6 receptor and tumor necrosis factor alpha in immature bovine and adult human articular cartilage. Sui Y; Lee JH; DiMicco MA; Vanderploeg EJ; Blake SM; Hung HH; Plaas AH; James IE; Song XY; Lark MW; Grodzinsky AJ Arthritis Rheum; 2009 Oct; 60(10):2985-96. PubMed ID: 19790045 [TBL] [Abstract][Full Text] [Related]
7. The effect of recombinant human fibroblast growth factor-18 on articular cartilage following single impact load. Barr L; Getgood A; Guehring H; Rushton N; Henson FM J Orthop Res; 2014 Jul; 32(7):923-7. PubMed ID: 24719286 [TBL] [Abstract][Full Text] [Related]
8. Short-term changes in cell and matrix damage following mechanical injury of articular cartilage explants and modelling of microphysical mediators. Morel V; Quinn TM Biorheology; 2004; 41(3-4):509-19. PubMed ID: 15299282 [TBL] [Abstract][Full Text] [Related]
9. Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression. Kurz B; Lemke A; Kehn M; Domm C; Patwari P; Frank EH; Grodzinsky AJ; Schünke M Arthritis Rheum; 2004 Jan; 50(1):123-30. PubMed ID: 14730608 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma. Huser CA; Peacock M; Davies ME Osteoarthritis Cartilage; 2006 Oct; 14(10):1002-10. PubMed ID: 16698290 [TBL] [Abstract][Full Text] [Related]
11. Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Lin PM; Chen CT; Torzilli PA Osteoarthritis Cartilage; 2004 Jun; 12(6):485-96. PubMed ID: 15135145 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the relationship between peak stress and proteoglycan loss following injurious compression of human post-mortem knee and ankle cartilage. Patwari P; Cheng DM; Cole AA; Kuettner KE; Grodzinsky AJ Biomech Model Mechanobiol; 2007 Jan; 6(1-2):83-9. PubMed ID: 16715319 [TBL] [Abstract][Full Text] [Related]
14. Matrix and cell injury due to sub-impact loading of adult bovine articular cartilage explants: effects of strain rate and peak stress. Quinn TM; Allen RG; Schalet BJ; Perumbuli P; Hunziker EB J Orthop Res; 2001 Mar; 19(2):242-9. PubMed ID: 11347697 [TBL] [Abstract][Full Text] [Related]
15. The influence of mechanical compression on the induction of osteoarthritis-related biomarkers in articular cartilage explants. Piscoya JL; Fermor B; Kraus VB; Stabler TV; Guilak F Osteoarthritis Cartilage; 2005 Dec; 13(12):1092-9. PubMed ID: 16168680 [TBL] [Abstract][Full Text] [Related]
16. Validation of an in vitro single-impact load model of the initiation of osteoarthritis-like changes in articular cartilage. Huser CA; Davies ME J Orthop Res; 2006 Apr; 24(4):725-32. PubMed ID: 16514652 [TBL] [Abstract][Full Text] [Related]
17. Effects of SKI 306X, a new herbal agent, on proteoglycan degradation in cartilage explant culture and collagenase-induced rabbit osteoarthritis model. Choi JH; Choi JH; Kim DY; Yoon JH; Youn HY; Yi JB; Rhee HI; Ryu KH; Jung K; Han CK; Kwak WJ; Cho YB Osteoarthritis Cartilage; 2002 Jun; 10(6):471-8. PubMed ID: 12056850 [TBL] [Abstract][Full Text] [Related]
18. P188 reduces cell death and IGF-I reduces GAG release following single-impact loading of articular cartilage. Natoli RM; Athanasiou KA J Biomech Eng; 2008 Aug; 130(4):041012. PubMed ID: 18601454 [TBL] [Abstract][Full Text] [Related]
20. Effects of R and S enantiomers and a racemic mixture of carprofen on the production and release of proteoglycan and prostaglandin E2 from equine chondrocytes and cartilage explants. Armstrong S; Lees P Am J Vet Res; 1999 Jan; 60(1):98-104. PubMed ID: 9918155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]