BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 23863710)

  • 1. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis.
    Williams-Karnesky RL; Sandau US; Lusardi TA; Lytle NK; Farrell JM; Pritchard EM; Kaplan DL; Boison D
    J Clin Invest; 2013 Aug; 123(8):3552-63. PubMed ID: 23863710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of adenosine in epilepsy.
    Weltha L; Reemmer J; Boison D
    Brain Res Bull; 2019 Sep; 151():46-54. PubMed ID: 30468847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetics and epilepsy prevention: The therapeutic potential of adenosine and metabolic therapies.
    Boison D; Rho JM
    Neuropharmacology; 2020 May; 167():107741. PubMed ID: 31419398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosinergic signaling in epilepsy.
    Boison D
    Neuropharmacology; 2016 May; 104():131-9. PubMed ID: 26341819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The depletion of DNA methyltransferase-1 and the epigenetic effects of 5-aza-2'deoxycytidine (decitabine) are differentially regulated by cell cycle progression.
    Al-Salihi M; Yu M; Burnett DM; Alexander A; Samlowski WE; Fitzpatrick FA
    Epigenetics; 2011 Aug; 6(8):1021-8. PubMed ID: 21725200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats.
    Lusardi TA; Akula KK; Coffman SQ; Ruskin DN; Masino SA; Boison D
    Neuropharmacology; 2015 Dec; 99():500-9. PubMed ID: 26256422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Adenosine Kinase Inhibitor in Adenosine Augmentation Therapy for Epilepsy: A Potential Novel Drug for Epilepsy.
    Wang X; Li T
    Curr Drug Targets; 2020; 21(3):252-257. PubMed ID: 31633474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetics of Epileptogenesis-Evoked Upregulation of Matrix Metalloproteinase-9 in Hippocampus.
    Zybura-Broda K; Amborska R; Ambrozek-Latecka M; Wilemska J; Bogusz A; Bucko J; Konopka A; Grajkowska W; Roszkowski M; Marchel A; Rysz A; Koperski L; Wilczynski GM; Kaczmarek L; Rylski M
    PLoS One; 2016; 11(8):e0159745. PubMed ID: 27505431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy.
    Buckmaster PS; Ingram EA; Wen X
    J Neurosci; 2009 Jun; 29(25):8259-69. PubMed ID: 19553465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine kinase: An epigenetic modulator in development and disease.
    Murugan M; Fedele D; Millner D; Alharfoush E; Vegunta G; Boison D
    Neurochem Int; 2021 Jul; 147():105054. PubMed ID: 33961946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient use of a systemic adenosine kinase inhibitor attenuates epilepsy development in mice.
    Sandau US; Yahya M; Bigej R; Friedman JL; Saleumvong B; Boison D
    Epilepsia; 2019 Apr; 60(4):615-625. PubMed ID: 30815855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic control of epilepsy target genes contributes to a cellular memory of epileptogenesis in cultured rat hippocampal neurons.
    Kiese K; Jablonski J; Hackenbracht J; Wrosch JK; Groemer TW; Kornhuber J; Blümcke I; Kobow K
    Acta Neuropathol Commun; 2017 Oct; 5(1):79. PubMed ID: 29089052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine dysfunction in epilepsy.
    Boison D
    Glia; 2012 Aug; 60(8):1234-43. PubMed ID: 22700220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine kinase as a target for therapeutic antisense strategies in epilepsy.
    Theofilas P; Brar S; Stewart KA; Shen HY; Sandau US; Poulsen D; Boison D
    Epilepsia; 2011 Mar; 52(3):589-601. PubMed ID: 21275977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiepileptic effects of silk-polymer based adenosine release in kindled rats.
    Szybala C; Pritchard EM; Lusardi TA; Li T; Wilz A; Kaplan DL; Boison D
    Exp Neurol; 2009 Sep; 219(1):126-35. PubMed ID: 19460372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation.
    Boison D; Stewart KA
    Biochem Pharmacol; 2009 Dec; 78(12):1428-37. PubMed ID: 19682439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy.
    Buckmaster PS; Lew FH
    J Neurosci; 2011 Feb; 31(6):2337-47. PubMed ID: 21307269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relations between brain pathology and temporal lobe epilepsy.
    Zhang X; Cui SS; Wallace AE; Hannesson DK; Schmued LC; Saucier DM; Honer WG; Corcoran ME
    J Neurosci; 2002 Jul; 22(14):6052-61. PubMed ID: 12122066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA methylation mediates persistent epileptiform activity in vitro and in vivo.
    Machnes ZM; Huang TC; Chang PK; Gill R; Reist N; Dezsi G; Ozturk E; Charron F; O'Brien TJ; Jones NC; McKinney RA; Szyf M
    PLoS One; 2013; 8(10):e76299. PubMed ID: 24098468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p53-inducible ribonucleotide reductase (p53R2/RRM2B) is a DNA hypomethylation-independent decitabine gene target that correlates with clinical response in myelodysplastic syndrome/acute myelogenous leukemia.
    Link PA; Baer MR; James SR; Jones DA; Karpf AR
    Cancer Res; 2008 Nov; 68(22):9358-66. PubMed ID: 19010910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.