These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23863783)

  • 1. Translocation and fidelity of Escherichia coli RNA polymerase.
    Nedialkov YA; Burton ZF
    Transcription; 2013; 4(3):136-43. PubMed ID: 23863783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA polymerase stalls in a post-translocated register and can hyper-translocate.
    Nedialkov YA; Nudler E; Burton ZF
    Transcription; 2012; 3(5):260-9. PubMed ID: 23132506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo.
    Imashimizu M; Takahashi H; Oshima T; McIntosh C; Bubunenko M; Court DL; Kashlev M
    Genome Biol; 2015 May; 16(1):98. PubMed ID: 25976475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-DNA and DNA-DNA base-pairing at the upstream edge of the transcription bubble regulate translocation of RNA polymerase and transcription rate.
    KIreeva M; Trang C; Matevosyan G; Turek-Herman J; Chasov V; Lubkowska L; Kashlev M
    Nucleic Acids Res; 2018 Jun; 46(11):5764-5775. PubMed ID: 29771376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translocation of Escherichia coli RNA polymerase against a protein roadblock in vivo highlights a passive sliding mechanism for transcript elongation.
    Mosrin-Huaman C; Turnbough CL; Rahmouni AR
    Mol Microbiol; 2004 Mar; 51(5):1471-81. PubMed ID: 14982639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase.
    Herbert KM; Zhou J; Mooney RA; Porta AL; Landick R; Block SM
    J Mol Biol; 2010 May; 399(1):17-30. PubMed ID: 20381500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Downstream DNA sequence effects on transcription elongation. Allosteric binding of nucleoside triphosphates facilitates translocation via a ratchet motion.
    Holmes SF; Erie DA
    J Biol Chem; 2003 Sep; 278(37):35597-608. PubMed ID: 12813036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing.
    Zhilina E; Esyunina D; Brodolin K; Kulbachinskiy A
    Nucleic Acids Res; 2012 Apr; 40(7):3078-91. PubMed ID: 22140106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hinge action versus grip in translocation by RNA polymerase.
    Nedialkov YA; Opron K; Caudill HL; Assaf F; Anderson AJ; Cukier RI; Wei G; Burton ZF
    Transcription; 2018; 9(1):1-16. PubMed ID: 28853995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription factor regulation of RNA polymerase's torque generation capacity.
    Ma J; Tan C; Gao X; Fulbright RM; Roberts JW; Wang MD
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2583-2588. PubMed ID: 30635423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic investigation of Escherichia coli RNA polymerase mutants that influence nucleotide discrimination and transcription fidelity.
    Holmes SF; Santangelo TJ; Cunningham CK; Roberts JW; Erie DA
    J Biol Chem; 2006 Jul; 281(27):18677-83. PubMed ID: 16621791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-dependent kinetic model for transcription elongation by RNA polymerase.
    Bai L; Shundrovsky A; Wang MD
    J Mol Biol; 2004 Nov; 344(2):335-49. PubMed ID: 15522289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T7 RNA polymerase elongation complex structure and movement.
    Huang J; Sousa R
    J Mol Biol; 2000 Oct; 303(3):347-58. PubMed ID: 11031112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of GreB-RNA polymerase interaction allow a proofreading accessory protein to patrol for transcription complexes needing rescue.
    Tetone LE; Friedman LJ; Osborne ML; Ravi H; Kyzer S; Stumper SK; Mooney RA; Landick R; Gelles J
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):E1081-E1090. PubMed ID: 28137878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Nun protein of bacteriophage HK022 inhibits translocation of Escherichia coli RNA polymerase without abolishing its catalytic activities.
    Hung SC; Gottesman ME
    Genes Dev; 1997 Oct; 11(20):2670-8. PubMed ID: 9334329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription initiation factor DksA has diverse effects on RNA chain elongation.
    Furman R; Sevostyanova A; Artsimovitch I
    Nucleic Acids Res; 2012 Apr; 40(8):3392-402. PubMed ID: 22210857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of rho-dependent transcription termination by NusG is specific to the Escherichia coli elongation complex.
    Pasman Z; von Hippel PH
    Biochemistry; 2000 May; 39(18):5573-85. PubMed ID: 10820031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NTP concentration effects on initial transcription by T7 RNAP indicate that translocation occurs through passive sliding and reveal that divergent promoters have distinct NTP concentration requirements for productive initiation.
    Guajardo R; Lopez P; Dreyfus M; Sousa R
    J Mol Biol; 1998 Sep; 281(5):777-92. PubMed ID: 9719634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase.
    Rutherford ST; Lemke JJ; Vrentas CE; Gaal T; Ross W; Gourse RL
    J Mol Biol; 2007 Mar; 366(4):1243-57. PubMed ID: 17207814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the open region and of DNA-protein contacts of archaeal RNA polymerase transcription complexes during transition from initiation to elongation.
    Spitalny P; Thomm M
    J Biol Chem; 2003 Aug; 278(33):30497-505. PubMed ID: 12783891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.