These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23863839)

  • 1. Analysis of epigenetic stability and conversions in Saccharomyces cerevisiae reveals a novel role of CAF-I in position-effect variegation.
    Jeffery DC; Wyse BA; Rehman MA; Brown GW; You Z; Oshidari R; Masai H; Yankulov KY
    Nucleic Acids Res; 2013 Oct; 41(18):8475-88. PubMed ID: 23863839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics and stability: epigenetic conversions in position effect variegation.
    Yankulov K
    Biochem Cell Biol; 2013 Feb; 91(1):6-13. PubMed ID: 23442136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A common telomeric gene silencing assay is affected by nucleotide metabolism.
    Rossmann MP; Luo W; Tsaponina O; Chabes A; Stillman B
    Mol Cell; 2011 Apr; 42(1):127-36. PubMed ID: 21474074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysfunctional CAF-I reveals its role in cell cycle progression and differential regulation of gene silencing.
    Rowlands H; Shaban K; Cheng A; Foster B; Yankulov K
    Cell Cycle; 2019 Nov; 18(22):3223-3236. PubMed ID: 31564230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RRM3 regulates epigenetic conversions in Saccharomyces cerevisiae in conjunction with Chromatin Assembly Factor I.
    Wyse B; Oshidari R; Rowlands H; Abbasi S; Yankulov K
    Nucleus; 2016 Jul; 7(4):405-14. PubMed ID: 27645054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PCNA connects DNA replication to epigenetic inheritance in yeast.
    Zhang Z; Shibahara K; Stillman B
    Nature; 2000 Nov; 408(6809):221-5. PubMed ID: 11089978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proliferating cell nuclear antigen and ASF1 modulate silent chromatin in Saccharomyces cerevisiae via lysine 56 on histone H3.
    Miller A; Yang B; Foster T; Kirchmaier AL
    Genetics; 2008 Jun; 179(2):793-809. PubMed ID: 18558650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dominant mutants of the Saccharomyces cerevisiae ASF1 histone chaperone bypass the need for CAF-1 in transcriptional silencing by altering histone and Sir protein recruitment.
    Tamburini BA; Carson JJ; Linger JG; Tyler JK
    Genetics; 2006 Jun; 173(2):599-610. PubMed ID: 16582440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dot1 and histone H3K79 methylation in natural telomeric and HM silencing.
    Takahashi YH; Schulze JM; Jackson J; Hentrich T; Seidel C; Jaspersen SL; Kobor MS; Shilatifard A
    Mol Cell; 2011 Apr; 42(1):118-26. PubMed ID: 21474073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci.
    Enomoto S; Berman J
    Genes Dev; 1998 Jan; 12(2):219-32. PubMed ID: 9436982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae.
    Hayashi N; Kobayashi M; Shimizu H; Yamamoto K; Murakami S; Nishimoto T
    Biochem Biophys Res Commun; 2007 Nov; 363(3):788-94. PubMed ID: 17904525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyses of POL30 (PCNA) reveal positional effects in transient repression or bi-modal active/silent state at the sub-telomeres of S. cerevisiae.
    Sauty SM; Yankulov K
    Epigenetics Chromatin; 2023 Oct; 16(1):40. PubMed ID: 37858268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disturbance of normal cell cycle progression enhances the establishment of transcriptional silencing in Saccharomyces cerevisiae.
    Laman H; Balderes D; Shore D
    Mol Cell Biol; 1995 Jul; 15(7):3608-17. PubMed ID: 7791768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SUMO E3 ligase Siz2 exerts a locus-dependent effect on gene silencing in Saccharomyces cerevisiae.
    Pasupala N; Easwaran S; Hannan A; Shore D; Mishra K
    Eukaryot Cell; 2012 Apr; 11(4):452-62. PubMed ID: 22345352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in the PCNA DNA Polymerase Clamp of
    Brothers M; Rine J
    Genetics; 2019 Oct; 213(2):449-463. PubMed ID: 31451562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Gene Silencing by Cdc7p via H4 K16 Acetylation and Phosphorylation of Chromatin Assembly Factor CAF-1 in
    Young TJ; Cui Y; Irudayaraj J; Kirchmaier AL
    Genetics; 2019 Apr; 211(4):1219-1237. PubMed ID: 30728156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.
    Gartenberg MR; Smith JS
    Genetics; 2016 Aug; 203(4):1563-99. PubMed ID: 27516616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulating repression: roles for the sir4 N-terminus in linker DNA protection and stabilization of epigenetic states.
    Kueng S; Tsai-Pflugfelder M; Oppikofer M; Ferreira HC; Roberts E; Tsai C; Roloff TC; Sack R; Gasser SM
    PLoS Genet; 2012; 8(5):e1002727. PubMed ID: 22654676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between Heterochromatic Loci Allows the Abundance of the Silencing Protein, Sir4, to Regulate de novo Assembly of Heterochromatin.
    Larin ML; Harding K; Williams EC; Lianga N; Doré C; Pilon S; Langis É; Yanofsky C; Rudner AD
    PLoS Genet; 2015 Nov; 11(11):e1005425. PubMed ID: 26587833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated dosage of Ulp1 disrupts telomeric silencing in Saccharomyces cerevisiae.
    Abraham NM; Mishra K
    Mol Biol Rep; 2018 Dec; 45(6):2481-2489. PubMed ID: 30357586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.