BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23863854)

  • 21. Computer simulation of cell entry of graphene nanosheet.
    Guo R; Mao J; Yan LT
    Biomaterials; 2013 Jun; 34(17):4296-301. PubMed ID: 23489926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrical method to quantify nanoparticle interaction with lipid bilayers.
    Carney RP; Astier Y; Carney TM; Voïtchovsky K; Jacob Silva PH; Stellacci F
    ACS Nano; 2013 Feb; 7(2):932-42. PubMed ID: 23267695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular simulation of translational and rotational diffusion of Janus nanoparticles at liquid interfaces.
    Rezvantalab H; Drazer G; Shojaei-Zadeh S
    J Chem Phys; 2015 Jan; 142(1):014701. PubMed ID: 25573572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles.
    Ding HM; Ma YQ
    Biomaterials; 2012 Aug; 33(23):5798-802. PubMed ID: 22607914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular uptake pathway and drug release characteristics of drug-encapsulated glycol chitosan nanoparticles in live cells.
    Park S; Lee SJ; Chung H; Her S; Choi Y; Kim K; Choi K; Kwon IC
    Microsc Res Tech; 2010 Sep; 73(9):857-65. PubMed ID: 20232459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Shape on Interaction Dynamics of Tetrahedral Nanoplastics and the Cell Membrane.
    Yong X; Du K
    J Phys Chem B; 2023 Feb; 127(7):1652-1663. PubMed ID: 36763902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phospholipid Bilayers: Stability and Encapsulation of Nanoparticles.
    Alipour E; Halverson D; McWhirter S; Walker GC
    Annu Rev Phys Chem; 2017 May; 68():261-283. PubMed ID: 28301758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticles at liquid interfaces: rotational dynamics and angular locking.
    Razavi S; Kretzschmar I; Koplik J; Colosqui CE
    J Chem Phys; 2014 Jan; 140(1):014904. PubMed ID: 24410239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembly of patterned nanoparticles on cellular membranes: effect of charge distribution.
    Li Y; Zhang X; Cao D
    J Phys Chem B; 2013 Jun; 117(22):6733-40. PubMed ID: 23668620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations.
    Prates Ramalho JP; Gkeka P; Sarkisov L
    Langmuir; 2011 Apr; 27(7):3723-30. PubMed ID: 21391652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrophysiological characterization of membrane disruption by nanoparticles.
    de Planque MR; Aghdaei S; Roose T; Morgan H
    ACS Nano; 2011 May; 5(5):3599-606. PubMed ID: 21517083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frozen translational and rotational motion of human immunodeficiency virus transacting activator of transcription peptide-modified nanocargo on neutral lipid bilayer.
    Wei L; Zhao X; Chen B; Li H; Xiao L; Yeung ES
    Anal Chem; 2013 May; 85(10):5169-75. PubMed ID: 23581852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoparticles act as protein carriers during cellular internalization.
    Doorley GW; Payne CK
    Chem Commun (Camb); 2012 Mar; 48(24):2961-3. PubMed ID: 22328990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticle-Mediated Mechanical Destruction of Cell Membranes: A Coarse-Grained Molecular Dynamics Study.
    Zhang L; Zhao Y; Wang X
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26665-26673. PubMed ID: 28719184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic Synthesis of Hybrid Nanoparticles with Controlled Lipid Layers: Understanding Flexibility-Regulated Cell-Nanoparticle Interaction.
    Zhang L; Feng Q; Wang J; Zhang S; Ding B; Wei Y; Dong M; Ryu JY; Yoon TY; Shi X; Sun J; Jiang X
    ACS Nano; 2015 Oct; 9(10):9912-21. PubMed ID: 26448362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Receptor-Mediated Endocytosis of Nanoparticles: Roles of Shapes, Orientations, and Rotations of Nanoparticles.
    Tang H; Zhang H; Ye H; Zheng Y
    J Phys Chem B; 2018 Jan; 122(1):171-180. PubMed ID: 29199830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solvatochromic dissociation of non-covalent fluorescent organic nanoparticles upon cell internalization.
    Breton M; Prével G; Audibert JF; Pansu R; Tauc P; Le Pioufle B; Français O; Fresnais J; Berret JF; Ishow E
    Phys Chem Chem Phys; 2011 Aug; 13(29):13268-76. PubMed ID: 21701730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.