These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23864077)

  • 1. Manipulating light absorption of graphene using plasmonic nanoparticles.
    Zhu J; Liu QH; Lin T
    Nanoscale; 2013 Sep; 5(17):7785-9. PubMed ID: 23864077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles.
    Niu J; Shin YJ; Son J; Lee Y; Ahn JH; Yang H
    Opt Express; 2012 Aug; 20(18):19690-6. PubMed ID: 23037021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of density and LSPR of Au nanoparticles on graphene.
    Lee S; Lee Mh; Shin HJ; Choi D
    Nanotechnology; 2013 Jul; 24(27):275702. PubMed ID: 23743613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-area, freestanding, single-layer graphene-gold: a hybrid plasmonic nanostructure.
    Iyer GR; Wang J; Wells G; Guruvenket S; Payne S; Bradley M; Borondics F
    ACS Nano; 2014 Jun; 8(6):6353-62. PubMed ID: 24860924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: using Ag nanoparticles as a plasmonic photocatalyst.
    Wu T; Liu S; Luo Y; Lu W; Wang L; Sun X
    Nanoscale; 2011 May; 3(5):2142-4. PubMed ID: 21451827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of plasmonic coupling and electrical current on persistent photoconductivity of single-layer graphene on pristine and silver-nanoparticle-coated SiO2/Si.
    Liu CY; Liang K; Chang CC; Tzeng Y
    Opt Express; 2012 Sep; 20(20):22943-52. PubMed ID: 23037444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene plasmon enhanced photoluminescence in ZnO microwires.
    Liu R; Fu XW; Meng J; Bie YQ; Yu DP; Liao ZM
    Nanoscale; 2013 Jun; 5(12):5294-8. PubMed ID: 23695346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ-generated nano-gold plasmon-enhanced photoelectrochemical aptasensing based on carboxylated perylene-functionalized graphene.
    Li J; Tu W; Li H; Han M; Lan Y; Dai Z; Bao J
    Anal Chem; 2014 Jan; 86(2):1306-12. PubMed ID: 24377281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced light-matter interactions in graphene-covered gold nanovoid arrays.
    Zhu X; Shi L; Schmidt MS; Boisen A; Hansen O; Zi J; Xiao S; Mortensen NA
    Nano Lett; 2013 Oct; 13(10):4690-6. PubMed ID: 24010940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic tailoring for precise control of plasmonic resonance absorbance of gold nanoparticle assemblies.
    Kim JH; Kim JW; Chung BH
    J Colloid Interface Sci; 2011 Aug; 360(2):335-40. PubMed ID: 21621790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions.
    Zedan AF; Moussa S; Terner J; Atkinson G; El-Shall MS
    ACS Nano; 2013 Jan; 7(1):627-36. PubMed ID: 23194145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical immunosensor with graphene/gold nanoparticles platform and ferrocene derivatives label.
    Wang G; Gang X; Zhou X; Zhang G; Huang H; Zhang X; Wang L
    Talanta; 2013 Jan; 103():75-80. PubMed ID: 23200360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant optical response from graphene--plasmonic system.
    Wang P; Zhang W; Liang O; Pantoja M; Katzer J; Schroeder T; Xie YH
    ACS Nano; 2012 Jul; 6(7):6244-9. PubMed ID: 22712497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system.
    Zhang K; Zhang H; Li C
    Phys Chem Chem Phys; 2015 May; 17(18):12051-5. PubMed ID: 25874280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of surface functionalization on the growth of gold nanostructures on graphene thin films.
    Kim YK; Na HK; Min DH
    Langmuir; 2010 Aug; 26(16):13065-70. PubMed ID: 20695544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and visible light photocatalytic activity of Ag/TiO₂/graphene nanocomposite.
    Wen Y; Ding H; Shan Y
    Nanoscale; 2011 Oct; 3(10):4411-7. PubMed ID: 21909581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced plasmonic light absorption engineering of graphene: simulation by boundary-integral spectral element method.
    Niu J; Luo M; Zhu J; Liu QH
    Opt Express; 2015 Feb; 23(4):4539-51. PubMed ID: 25836491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light absorber based on nano-spheres on a substrate reflector.
    Dai J; Ye F; Chen Y; Muhammed M; Qiu M; Yan M
    Opt Express; 2013 Mar; 21(6):6697-706. PubMed ID: 23546051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.