BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 2386429)

  • 1. Determination of urinary glutathione S-transferase and lactate dehydrogenase for differentiation between proximal and distal nephron damage.
    Bomhard E; Maruhn D; Vogel O; Mager H
    Arch Toxicol; 1990; 64(4):269-78. PubMed ID: 2386429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative investigations on the effects of acute intraperitoneal cadmium, chromium, and mercury exposure on the kidney.
    Bomhard E; Maruhn D; Vogel O
    Uremia Invest; 1985-1986; 9(2):131-6. PubMed ID: 2876541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the usefulness of urinary biomarkers for nephrotoxicity in rats.
    Tonomura Y; Tsuchiya N; Torii M; Uehara T
    Toxicology; 2010 Jun; 273(1-3):53-9. PubMed ID: 20438795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamine transaminase K intranephron localization in rats determined by urinary excretion after treatment with segment-specific nephrotoxicants.
    Trevisan A; Cristofori P; Fanelli G; Bicciato F; Stocco E
    Arch Toxicol; 1998; 72(8):531-5. PubMed ID: 9765069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urinary biomarkers monitoring for experimental fluoride nephrotoxicity.
    Usuda K; Kono K; Dote T; Nishiura K; Miyata K; Nishiura H; Shimahara M; Sugimoto K
    Arch Toxicol; 1998; 72(2):104-9. PubMed ID: 9456082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urinary excretion of glutathione S transferases alpha and pi in patients with proteinuria: reflection of the site of tubular injury.
    Branten AJ; Mulder TP; Peters WH; Assmann KJ; Wetzels JF
    Nephron; 2000 Jun; 85(2):120-6. PubMed ID: 10867517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of novel biomarkers of nephrotoxicity in two strains of rat treated with Cisplatin.
    Gautier JC; Riefke B; Walter J; Kurth P; Mylecraine L; Guilpin V; Barlow N; Gury T; Hoffman D; Ennulat D; Schuster K; Harpur E; Pettit S
    Toxicol Pathol; 2010 Oct; 38(6):943-56. PubMed ID: 20716785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercuric chloride-induced cytotoxicity and compensatory hypertrophy in rat kidney proximal tubular cells.
    Lash LH; Zalups RK
    J Pharmacol Exp Ther; 1992 May; 261(2):819-29. PubMed ID: 1578387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercuric chloride-induced alterations in stress protein distribution in rat kidney.
    Stacchiotti A; Lavazza A; Rezzani R; Borsani E; Rodella L; Bianchi R
    Histol Histopathol; 2004 Oct; 19(4):1209-18. PubMed ID: 15375764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biochemical studies of chemically induced renal damage. I) Changes of urinary enzyme activities induced by puromycin aminonucleoside and mercuric chloride (author's transl)].
    Ohno Y; Kawanishi T; Takahashi A; Omori Y
    Eisei Shikenjo Hokoku; 1979; (97):49-56. PubMed ID: 543958
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of sodium chromate pretreatment on mercuric chloride-induced nephrotoxicity.
    Sparrow S; Magos L; Snowden R
    Arch Toxicol; 1988; 61(6):440-3. PubMed ID: 3190441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding renal toxicity of heavy metals.
    Diamond GL; Zalups RK
    Toxicol Pathol; 1998; 26(1):92-103. PubMed ID: 9502391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urinalysis for detection of chemically induced renal damage (2)--Changes in urinary excretions of enzymes and various components caused by p-aminophenol, puromycin aminonucleoside and hexadimethrine.
    Ohata H; Momose K; Takahashi A; Omori Y
    J Toxicol Sci; 1987 Nov; 12(4):357-72. PubMed ID: 3449640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nephrotoxicity of hexachloro-1:3-butadiene in the male Hanover Wistar rat; correlation of minimal histopathological changes with biomarkers of renal injury.
    Swain A; Turton J; Scudamore C; Maguire D; Pereira I; Freitas S; Smyth R; Munday M; Stamp C; Gandhi M; Sondh S; Ashall H; Francis I; Woodfine J; Bowles J; York M
    J Appl Toxicol; 2012 Jun; 32(6):417-28. PubMed ID: 21905055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urinary ligandin and glutathione-S-transferase in gentamicin-induced nephrotoxicity in the rat.
    Feinfeld DA; Fleischner GM; Arias IM
    Clin Sci (Lond); 1981 Jul; 61(1):123-5. PubMed ID: 7249552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in renal cellular glutathione metabolism after in vivo administration of a subtoxic dose of mercuric chloride.
    Lash LH; Zalups RK
    J Biochem Toxicol; 1996; 11(1):1-9. PubMed ID: 8806046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductions in renal mass and the nephropathy induced by mercury.
    Zalups RK
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):366-79. PubMed ID: 9144453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome.
    Ichikawa I; Rennke HG; Hoyer JR; Badr KF; Schor N; Troy JL; Lechene CP; Brenner BM
    J Clin Invest; 1983 Jan; 71(1):91-103. PubMed ID: 6848563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Usefulness of the assessment of urinary enzyme leakage in monitoring acute fluoride nephrotoxicity.
    Usuda K; Kono K; Dote T; Nishiura H; Tagawa T
    Arch Toxicol; 1999 Aug; 73(6):346-51. PubMed ID: 10447562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Studies on the mechanisms of renal damages induced by nephrotoxic compounds].
    Yamada T
    Nihon Hoigaku Zasshi; 1995 Dec; 49(6):447-57. PubMed ID: 8583688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.