These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 23864352)

  • 1. Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches.
    Estes LD; Beukes H; Bradley BA; Debats SR; Oppenheimer M; Ruane AC; Schulze R; Tadross M
    Glob Chang Biol; 2013 Dec; 19(12):3762-74. PubMed ID: 23864352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe.
    Elsgaard L; Børgesen CD; Olesen JE; Siebert S; Ewert F; Peltonen-Sainio P; Rötter RP; Skjelvåg AO
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1514-26. PubMed ID: 22827234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.
    Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using changes in agricultural utility to quantify future climate-induced risk to conservation.
    Estes LD; Paroz LL; Bradley BA; Green JM; Hole DG; Holness S; Ziv G; Oppenheimer MG; Wilcove DS
    Conserv Biol; 2014 Apr; 28(2):427-37. PubMed ID: 24372589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis.
    Rettie FM; Gayler S; K D Weber T; Tesfaye K; Streck T
    PLoS One; 2022; 17(1):e0262951. PubMed ID: 35061854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projective analysis of staple food crop productivity in adaptation to future climate change in China.
    Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G
    Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin.
    Mishra A; Singh R; Raghuwanshi NS; Chatterjee C; Froebrich J
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S132-8. PubMed ID: 23800620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP).
    Ruane AC; McDermid S; Rosenzweig C; Baigorria GA; Jones JW; Romero CC; Dewayne Cecil L
    Glob Chang Biol; 2014 Feb; 20(2):394-407. PubMed ID: 24115520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change and maize yield in southern Africa: what can farm management do?
    Rurinda J; van Wijk MT; Mapfumo P; Descheemaeker K; Supit I; Giller KE
    Glob Chang Biol; 2015 Dec; 21(12):4588-601. PubMed ID: 26251975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Climatic potential productivity of winter wheat and summer maize in Huanghuaihai Plain in 2011-2050].
    Zhao JF; Guo JP; Wu DR; Fang SB; E YH
    Ying Yong Sheng Tai Xue Bao; 2011 Dec; 22(12):3189-95. PubMed ID: 22384586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production.
    Fodor N; Challinor A; Droutsas I; Ramirez-Villegas J; Zabel F; Koehler AK; Foyer CH
    Plant Cell Physiol; 2017 Nov; 58(11):1833-1847. PubMed ID: 29016928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios.
    Zhang Y; Wang Y; Niu H
    Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.
    Falloon P; Betts R
    Sci Total Environ; 2010 Nov; 408(23):5667-87. PubMed ID: 19501386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate variation explains a third of global crop yield variability.
    Ray DK; Gerber JS; MacDonald GK; West PC
    Nat Commun; 2015 Jan; 6():5989. PubMed ID: 25609225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of modelling tools to assess climate change impacts on smallholder oil seed yields in South Africa.
    Kephe PN; Mkuhlani S; Rusere F; Chemura A
    PLoS One; 2024; 19(5):e0301254. PubMed ID: 38713689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate trends and global crop production since 1980.
    Lobell DB; Schlenker W; Costa-Roberts J
    Science; 2011 Jul; 333(6042):616-20. PubMed ID: 21551030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projected changes in East African climate and its impacts on climatic suitability of maize production areas by the mid-twenty-first century.
    Ojara MA; Yunsheng L; Ongoma V; Mumo L; Akodi D; Ayugi B; Ogwang BA
    Environ Monit Assess; 2021 Nov; 193(12):831. PubMed ID: 34797418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya.
    Gummadi S; Kadiyala MDM; Rao KPC; Athanasiadis I; Mulwa R; Kilavi M; Legesse G; Amede T
    PLoS One; 2020; 15(11):e0241147. PubMed ID: 33151967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat.
    Zhang T; Lin X; Sassenrath GF
    Sci Total Environ; 2015 Mar; 508():331-42. PubMed ID: 25497355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.