These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 23864593)

  • 1. Human mobility patterns predict divergent epidemic dynamics among cities.
    Dalziel BD; Pourbohloul B; Ellner SP
    Proc Biol Sci; 2013 Sep; 280(1766):20130763. PubMed ID: 23864593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of mobility network properties on predicted epidemic dynamics in Dhaka and Bangkok.
    Brown TS; Engø-Monsen K; Kiang MV; Mahmud AS; Maude RJ; Buckee CO
    Epidemics; 2021 Jun; 35():100441. PubMed ID: 33667878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the use of human mobility proxies for modeling epidemics.
    Tizzoni M; Bajardi P; Decuyper A; Kon Kam King G; Schneider CM; Blondel V; Smoreda Z; González MC; Colizza V
    PLoS Comput Biol; 2014 Jul; 10(7):e1003716. PubMed ID: 25010676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commuter mobility and the spread of infectious diseases: application to influenza in France.
    Charaudeau S; Pakdaman K; Boëlle PY
    PLoS One; 2014; 9(1):e83002. PubMed ID: 24416152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidemiological implications of mobility between a large urban centre and smaller satellite cities.
    Arino J; Portet S
    J Math Biol; 2015 Nov; 71(5):1243-65. PubMed ID: 25586236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidemic spreading induced by diversity of agents' mobility.
    Zhou J; Chung NN; Chew LY; Lai CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026115. PubMed ID: 23005833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structured epidemic model incorporating geographic mobility among regions.
    Sattenspiel L; Dietz K
    Math Biosci; 1995; 128(1-2):71-91. PubMed ID: 7606146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of Disease Transmission in a Large Network.
    Hoen AG; Hladish TJ; Eggo RM; Lenczner M; Brownstein JS; Meyers LA
    J Med Internet Res; 2015 Jul; 17(7):e169. PubMed ID: 26156032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An agent-based approach for modeling dynamics of contagious disease spread.
    Perez L; Dragicevic S
    Int J Health Geogr; 2009 Aug; 8():50. PubMed ID: 19656403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling epidemic spread in cities using public transportation as a proxy for generalized mobility trends.
    Malik O; Gong B; Moussawi A; Korniss G; Szymanski BK
    Sci Rep; 2022 Apr; 12(1):6372. PubMed ID: 35430595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated travel network model for studying epidemics: Interplay between journeys and epidemic.
    Ruan Z; Wang C; Hui PM; Liu Z
    Sci Rep; 2015 Jun; 5():11401. PubMed ID: 26073191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling epidemic in metapopulation networks with heterogeneous diffusion rates.
    Liu MX; Zhang J; Li ZG; Sun YZ
    Math Biosci Eng; 2019 Aug; 16(6):7085-7097. PubMed ID: 31698604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the paths of COVID-19 in a large city based on public transportation data.
    Araújo JLB; Oliveira EA; Lima Neto AS; Andrade JS; Furtado V
    Sci Rep; 2023 Apr; 13(1):5761. PubMed ID: 37031258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of urban structure on infectious disease spreading.
    Aguilar J; Bassolas A; Ghoshal G; Hazarie S; Kirkley A; Mazzoli M; Meloni S; Mimar S; Nicosia V; Ramasco JJ; Sadilek A
    Sci Rep; 2022 Mar; 12(1):3816. PubMed ID: 35264587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemic spreading in localized environments with recurrent mobility patterns.
    Granell C; Mucha PJ
    Phys Rev E; 2018 May; 97(5-1):052302. PubMed ID: 29906863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of routine versus random movements on the spread of disease in Great Britain.
    Danon L; House T; Keeling MJ
    Epidemics; 2009 Dec; 1(4):250-8. PubMed ID: 21352771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The duration of travel impacts the spatial dynamics of infectious diseases.
    Giles JR; Zu Erbach-Schoenberg E; Tatem AJ; Gardner L; Bjørnstad ON; Metcalf CJE; Wesolowski A
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22572-22579. PubMed ID: 32839329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human mobility and time spent at destination: impact on spatial epidemic spreading.
    Poletto C; Tizzoni M; Colizza V
    J Theor Biol; 2013 Dec; 338():41-58. PubMed ID: 24012488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the dynamics of SEIRS epidemic model with transport-related infection.
    Denphedtnong A; Chinviriyasit S; Chinviriyasit W
    Math Biosci; 2013 Oct; 245(2):188-205. PubMed ID: 23876843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between epidemic spread and information propagation on metapopulation networks.
    Wang B; Han Y; Tanaka G
    J Theor Biol; 2017 May; 420():18-25. PubMed ID: 28259661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.