BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 23864615)

  • 1. The short stalk length of highly pathogenic avian influenza H5N1 virus neuraminidase limits transmission of pandemic H1N1 virus in ferrets.
    Blumenkrantz D; Roberts KL; Shelton H; Lycett S; Barclay WS
    J Virol; 2013 Oct; 87(19):10539-51. PubMed ID: 23864615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets.
    Imai M; Watanabe T; Hatta M; Das SC; Ozawa M; Shinya K; Zhong G; Hanson A; Katsura H; Watanabe S; Li C; Kawakami E; Yamada S; Kiso M; Suzuki Y; Maher EA; Neumann G; Kawaoka Y
    Nature; 2012 May; 486(7403):420-8. PubMed ID: 22722205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H9N2 Influenza Virus Infections in Human Cells Require a Balance between Neuraminidase Sialidase Activity and Hemagglutinin Receptor Affinity.
    Arai Y; Elgendy EM; Daidoji T; Ibrahim MS; Ono T; Sriwilaijaroen N; Suzuki Y; Nakaya T; Matsumoto K; Watanabe Y
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemagglutinin-Neuraminidase Balance Influences the Virulence Phenotype of a Recombinant H5N3 Influenza A Virus Possessing a Polybasic HA0 Cleavage Site.
    Diederich S; Berhane Y; Embury-Hyatt C; Hisanaga T; Handel K; Cottam-Birt C; Ranadheera C; Kobasa D; Pasick J
    J Virol; 2015 Nov; 89(21):10724-34. PubMed ID: 26246579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemagglutinin-neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets.
    Yen HL; Liang CH; Wu CY; Forrest HL; Ferguson A; Choy KT; Jones J; Wong DD; Cheung PP; Hsu CH; Li OT; Yuen KM; Chan RW; Poon LL; Chan MC; Nicholls JM; Krauss S; Wong CH; Guan Y; Webster RG; Webby RJ; Peiris M
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14264-9. PubMed ID: 21825167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic characterization and pathogenicity assessment of highly pathogenic H5N1 avian influenza viruses isolated from migratory wild birds in 2011, South Korea.
    Kwon HI; Song MS; Pascua PN; Baek YH; Lee JH; Hong SP; Rho JB; Kim JK; Poo H; Kim CJ; Choi YK
    Virus Res; 2011 Sep; 160(1-2):305-15. PubMed ID: 21782862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Airborne transmission of influenza A/H5N1 virus between ferrets.
    Herfst S; Schrauwen EJ; Linster M; Chutinimitkul S; de Wit E; Munster VJ; Sorrell EM; Bestebroer TM; Burke DF; Smith DJ; Rimmelzwaan GF; Osterhaus AD; Fouchier RA
    Science; 2012 Jun; 336(6088):1534-41. PubMed ID: 22723413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet.
    Zhang Y; Zhang Q; Kong H; Jiang Y; Gao Y; Deng G; Shi J; Tian G; Liu L; Liu J; Guan Y; Bu Z; Chen H
    Science; 2013 Jun; 340(6139):1459-63. PubMed ID: 23641061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity.
    Chen LM; Blixt O; Stevens J; Lipatov AS; Davis CT; Collins BE; Cox NJ; Paulson JC; Donis RO
    Virology; 2012 Jan; 422(1):105-13. PubMed ID: 22056389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice.
    Matsuoka Y; Swayne DE; Thomas C; Rameix-Welti MA; Naffakh N; Warnes C; Altholtz M; Donis R; Subbarao K
    J Virol; 2009 May; 83(9):4704-8. PubMed ID: 19225004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progressive glycosylation of the haemagglutinin of avian influenza H5N1 modulates virus replication, virulence and chicken-to-chicken transmission without significant impact on antigenic drift.
    Abdelwhab EM; Veits J; Tauscher K; Ziller M; Grund C; Hassan MK; Shaheen M; Harder TC; Teifke J; Stech J; Mettenleiter TC
    J Gen Virol; 2016 Dec; 97(12):3193-3204. PubMed ID: 27902339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reassortment between Avian H5N1 and human influenza viruses is mainly restricted to the matrix and neuraminidase gene segments.
    Schrauwen EJ; Bestebroer TM; Rimmelzwaan GF; Osterhaus AD; Fouchier RA; Herfst S
    PLoS One; 2013; 8(3):e59889. PubMed ID: 23527283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continued Evolution of H5Nx Avian Influenza Viruses in Bangladeshi Live Poultry Markets: Pathogenic Potential in Poultry and Mammalian Models.
    El-Shesheny R; Franks J; Turner J; Seiler P; Walker D; Friedman K; Mukherjee N; Kercher L; Hasan MK; Feeroz MM; Krauss S; Vogel P; McKenzie P; Barman S; Webby RJ; Webster RG
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32907981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuraminidase and hemagglutinin matching patterns of a highly pathogenic avian and two pandemic H1N1 influenza A viruses.
    Zhang Y; Lin X; Wang G; Zhou J; Lu J; Zhao H; Zhang F; Wu J; Xu C; Du N; Li Z; Zhang Y; Wang X; Bi S; Shu Y; Zhou H; Tan W; Wu X; Chen Z; Wang Y
    PLoS One; 2010 Feb; 5(2):e9167. PubMed ID: 20161801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to A/Puerto Rico/8/1934-based reassortant viruses.
    Campbell PJ; Danzy S; Kyriakis CS; Deymier MJ; Lowen AC; Steel J
    J Virol; 2014 Apr; 88(7):3802-14. PubMed ID: 24429367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of pseudoparticles paired with hemagglutinin and neuraminidase from highly pathogenic H5N1 influenza and avian influenza A (H7N9) viruses.
    Zhang F; Wang S; Wang Y; Shang X; Zhou H; Cai L
    Virus Res; 2018 Jul; 253():20-27. PubMed ID: 29859234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of H5N1 influenza A virus that caused the first highly pathogenic avian influenza outbreak in Saudi Arabia.
    Al-Qahtani AA; Mubin M; Almajhdi FN; Alarifi S; Dela Cruz DM; Rehman MS; Ismail MM; Ahmed N; Al-Blowi MH; Khalak H; Al-Ahdal MN
    J Infect Dev Ctries; 2015 Nov; 9(11):1210-9. PubMed ID: 26623630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replication and pathogenesis associated with H5N1, H5N2, and H5N3 low-pathogenic avian influenza virus infection in chickens and ducks.
    Mundt E; Gay L; Jones L; Saavedra G; Tompkins SM; Tripp RA
    Arch Virol; 2009; 154(8):1241-8. PubMed ID: 19575275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008.
    Wibawa H; Henning J; Wong F; Selleck P; Junaidi A; Bingham J; Daniels P; Meers J
    Virol J; 2011 Sep; 8():425. PubMed ID: 21896207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of host genes linked with the survivability of chickens infected with recombinant viruses possessing H5N1 surface antigens from a highly pathogenic avian influenza virus.
    Uchida Y; Watanabe C; Takemae N; Hayashi T; Oka T; Ito T; Saito T
    J Virol; 2012 Mar; 86(5):2686-95. PubMed ID: 22190712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.