These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23864641)

  • 1. Hypercapnia-induced increases in cerebral blood flow do not improve lower body negative pressure tolerance during hyperthermia.
    Lucas RA; Pearson J; Schlader ZJ; Crandall CG
    Am J Physiol Regul Integr Comp Physiol; 2013 Sep; 305(6):R604-9. PubMed ID: 23864641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent and interactive effects of incremental heat strain, orthostatic stress, and mild hypohydration on cerebral perfusion.
    Lucas RAI; Wilson LC; Ainslie PN; Fan JL; Thomas KN; Cotter JD
    Am J Physiol Regul Integr Comp Physiol; 2018 Mar; 314(3):R415-R426. PubMed ID: 29212807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute volume expansion attenuates hyperthermia-induced reductions in cerebral perfusion during simulated hemorrhage.
    Schlader ZJ; Seifert T; Wilson TE; Bundgaard-Nielsen M; Secher NH; Crandall CG
    J Appl Physiol (1985); 2013 Jun; 114(12):1730-5. PubMed ID: 23580601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of hypercapnia on regional cerebral blood flow regulation during progressive lower-body negative pressure.
    Thrall SF; Tymko MM; Green CLM; Wynnyk KI; Brandt RA; Day TA
    Eur J Appl Physiol; 2021 Jan; 121(1):339-349. PubMed ID: 33089364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An assessment of hypercapnia-induced elevations in regional cerebral perfusion during combined orthostatic and heat stresses.
    Shibasaki M; Sato K; Hirasawa A; Sadamoto T; Crandall CG; Ogoh S
    J Physiol Sci; 2020 May; 70(1):25. PubMed ID: 32366213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability in orthostatic tolerance during heat stress: cerebrovascular reactivity to arterial carbon dioxide.
    Lee JF; Christmas KM; Harrison ML; Hurr C; Kim K; Brothers RM
    Aviat Space Environ Med; 2014 Jun; 85(6):624-30. PubMed ID: 24919383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The magnitude of heat stress-induced reductions in cerebral perfusion does not predict heat stress-induced reductions in tolerance to a simulated hemorrhage.
    Lee JF; Harrison ML; Brown SR; Brothers RM
    J Appl Physiol (1985); 2013 Jan; 114(1):37-44. PubMed ID: 23139368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure to passive heat and cold stress differentially modulates cerebrovascular-CO
    Skinner BD; Lucas RAI; Lucas SJE
    J Appl Physiol (1985); 2024 Jan; 136(1):23-32. PubMed ID: 37969086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cool head-out water immersion does not alter cerebrovascular reactivity to hypercapnia despite elevated middle cerebral artery blood velocity: A pilot study.
    Worley ML; Reed EL; Klaes N; Schlader ZJ; Johnson BD
    PLoS One; 2024; 19(3):e0298587. PubMed ID: 38478550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge.
    Pearson J; Lucas RA; Schlader ZJ; Gagnon D; Crandall CG
    Exp Physiol; 2017 Feb; 102(2):255-264. PubMed ID: 27981648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of protocols for simulating hemorrhage in humans: step versus ramp lower body negative pressure.
    Rosenberg AJ; Kay VL; Anderson GK; Sprick JD; Rickards CA
    J Appl Physiol (1985); 2021 Feb; 130(2):380-389. PubMed ID: 33211600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normothermic central hypovolemia tolerance reflects hyperthermic tolerance.
    Schlader ZJ; Crandall CG
    Clin Auton Res; 2014 Jun; 24(3):119-26. PubMed ID: 24700256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sweat loss during heat stress contributes to subsequent reductions in lower-body negative pressure tolerance.
    Lucas RA; Ganio MS; Pearson J; Crandall CG
    Exp Physiol; 2013 Feb; 98(2):473-80. PubMed ID: 22872657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blunted shear-mediated dilation of the internal but not common carotid artery in response to lower body negative pressure.
    Iwamoto E; Bock JM; Casey DP
    J Appl Physiol (1985); 2018 May; 124(5):1326-1332. PubMed ID: 29446714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small reductions in skin temperature after onset of a simulated hemorrhagic challenge improve tolerance in exercise heat-stressed individuals.
    Trotter CE; Pizzey FK; Batterson PM; Jacobs RA; Pearson J
    Am J Physiol Regul Integr Comp Physiol; 2018 Sep; 315(3):R539-R546. PubMed ID: 30088981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-intensity interval exercise reduces tolerance to a simulated haemorrhagic challenge in heat-stressed individuals.
    Trotter CE; Tourula E; Pizzey FK; Batterson PM; Jacobs RA; Pearson J
    Exp Physiol; 2021 Jan; 106(1):212-221. PubMed ID: 32003866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat stress reduces cerebral blood velocity and markedly impairs orthostatic tolerance in humans.
    Wilson TE; Cui J; Zhang R; Crandall CG
    Am J Physiol Regul Integr Comp Physiol; 2006 Nov; 291(5):R1443-8. PubMed ID: 16763078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of breathing 5% CO2 on human cardiovascular responses and tolerance to orthostatic stress.
    Howden R; Lightfoot JT; Brown SJ; Swaine IL
    Exp Physiol; 2004 Jul; 89(4):465-71. PubMed ID: 15131068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baroreflex-induced sympathetic activation does not alter cerebrovascular CO2 responsiveness in humans.
    LeMarbre G; Stauber S; Khayat RN; Puleo DS; Skatrud JB; Morgan BJ
    J Physiol; 2003 Sep; 551(Pt 2):609-16. PubMed ID: 12844511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of head-down-tilt bed rest on cerebral hemodynamics during orthostatic stress.
    Zhang R; Zuckerman JH; Pawelczyk JA; Levine BD
    J Appl Physiol (1985); 1997 Dec; 83(6):2139-45. PubMed ID: 9390992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.